Spelling suggestions: "subject:"ladungstransport"" "subject:"ladungstransports""
1 |
Ladungstransportmodell dielektrisch behinderter EntladungenTrampert, Klaus January 2008 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2008 / Hergestellt on demand
|
2 |
Charge transport in disordered organic and nanocrystalline inorganic semiconductors - Effect of charge carrier density variation / Ladungstransport in ungeordneten organischen und nanokristallinen anorganischen Halbleitern - Auswirkung der LadungsträgerdichtevariationHammer, Maria January 2011 (has links) (PDF)
The charge transport properties of disordered organic and nanocrystalline inorganic semiconductors as well as their combinations have been investigated in regard to the charge carrier density employing field-effect-transistor structures. The results were discussed in the framework of different theoretical models. In organic semiconductors the presence of positional and energetic disorder determines the transport of charges through the respective thin films and interfaces. The electronic disorder is characterized by statistically distributed and localized transport sites which were shown to form a Gaussian density of states. In this electronic environment the charge transport occurs via thermally activated hopping between the localized states and therefore depends on the temperature and the local electric field. Particularly, a dependence of the carrier mobility on the charge carrier concentration is observed due to filling of tail states. Inorganic nanocrystalline semiconductors, however, are expected to present a different electronic structure: Within the volume of a nanocrystallite the semiconductor is assumed to reflect the electronic properties of the crystalline bulk material. However, the outer shell is characterized by a relatively large density of surface states and correspondingly bending of the energy bands, which creates an energetic barrier between the adjacent particles. In a nanocrystalline thin film this characteristic can be rate-limiting for the inter-particle carrier transport as reflected by reduced charge carrier mobility. The effective barrier height can be reduced by controlled doping of the nanocrystals which results in improved majority carrier transfer rates across the barrier. However, doping results in the simultaneous increase of the defect density and consequently to enhanced limitation of the mobility due to charge carrier scattering. In the experiments, thin films of commercially available p- and n-type organic semiconductors (P3HT, and two derivatives of PCBM) were investigated in field-effect transistor structures. Further, sol-gel synthesized n-type nanocrystalline-ZnO (nc-ZnO) with varied doping concentration (agent: aluminum Al$^{3+}$) was introduced in order to establish an alternative way of customizing the charge transport properties of the neat material and in combination with the organic polymer semiconductor P3HT. / Der Ladungstransport in ungeordneten organischen und nanokristallinen anorganischen Halb\-leitern sowie in deren Mischsystemen wurde im Hinblick auf die Ladungsträgerdichte in Feldeffekttransistoren untersucht. Die Ergebnisse wurden anhand verschiedener theoretischer Modelle diskutiert. In organischen Halbleitern bestimmt die räumliche und energetische Unordnung den Ladungstransport durch die jeweiligen dünnen Schichten und Grenzflächen. Dabei ist die elektronische Unordnung charakterisiert durch statistisch verteilte und lokalisierte Transportzustände, die eine Gaußsche Zustandsdichte zeigen. In dieser elektronischen Umgebung ist der Ladungstransport durch thermisch aktiviertes Hüpfen zwischen lokalisierten Zuständen gekennzeichnet und hängt demzufolge von der Temperatur und dem lokalen elektrischen Feld ab. Insbesondere wurde eine Abhängigkeit der Mobilität von der Ladungsträgerdichte beobachtet, was eine Folge des Füllens energetisch tief liegender Zustände ist. Anorganische nanokristalline Halbleiter zeigen eine andere elektronische Struktur: Im Volumen des Nanokristalls kann man vereinfacht die elektrischen Eigenschaften des jeweiligen Einkristalls annehmen. Jedoch ist die äußere Hülle durch eine relativ hohe Dichte an Oberflächenzuständen und einer damit einhergehenden Energiebandverbiegung charakterisiert. Daher ergibt sich eine Energiebarriere zwischen den angrenzenden Kristalliten. In nanokristallinen dünnen Schichten kann diese Eigenschaft den Ladungstransport limitieren, was durch eine verringerte Beweglichkeit widergespiegelt wird. Die effektive Barrierenhöhe kann durch kontrollierte Dotierung der Nanokristalle vermindert werden, was die Transferraten über die Barriere erhöht. Jedoch führt Dotierung gleichzeitig zu einer Zunahme der Defektdichte und folglich zu einer weiteren Minderung der Beweglichkeit durch Streuprozesse der Ladungsträger. In den hier gezeigten Experimenten wurden dünne Schichten bestehend aus kommerziell erhältlichen organischen p- und n-Halbleitern (P3HT und zwei Derivate von PCBM) in Feldeffekttransistorstrukturen untersucht. Des weiteren wurde Sol--Gel synthetisiertes n-leitendes nanokristallines ZnO (nc-ZnO) mit variiertem Aluminium Dotierlevel eingeführt, was einen alternativen Weg aufzeigt, die Eigenschaften des Ladungstransports sowohl im reinen Material als auch in dessen Kombination mit dem organischen Polymer P3HT einzustellen.
|
3 |
Ambipolarer Ladungstransport in organischen Halbleiter-Mischschichten bestehend aus C 60 und CuPcBronner, Markus January 2008 (has links) (PDF)
Augsburg, Univ., Diss., 2008.
|
4 |
Vernetzbare Lochtransportpolymere für den Einsatz in organischen Leuchtdioden (OLEDs)Jungermann, Steffen. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--München.
|
5 |
Charge Transport and Recombination Dynamics in Organic Bulk Heterojunction Solar Cells / Ladungstransport und Rekombination in organischen Heterogemisch-SolarzellenBaumann, Andreas January 2011 (has links) (PDF)
The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as "Time-of-Flight" (TOF)), as well as the transient charge extraction technique of "Charge Carrier Extraction by Linearly Increasing Voltage" (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics, i.e. charge transport and charge carrier recombination, in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are studied in view of the charge carrier transport and recombination dynamics. Finally, within the framework of this work the technique of photo-CELIV is improved. With the modified technique it is now feasible to study the mobility and lifetime of charge carriers in organic solar cells under operating conditions. / Der Ladungstransport in ungeordneten organischen "bulk heterojunction" (Heterogemisch, Abk.: BHJ) Solarzellen stellt einen kritischen Prozess dar, der den Wirkungsgrad wesentlich beeinflusst. Aufgrund der großen Nachfrage neuer, vielversprechender Materialien für die organische Photovoltaik, ist es um so wichtiger nicht nur ihre photophysikalischen sondern auch deren elektrischen Eigenschaften zu charakterisieren. Gerade letztere erfordern experimentelle Messmethoden, die an funktionsfähigen Solarzellen angewandt werden können. Zur experimentellen Untersuchung des Landungstransportes in organischen Solarzellen werden in dieser Arbeit die Methoden der transienten Photoleitfähigkeit, auch bekannt als "Time-of-Flight" (TOF), sowie die transiente Ladungsextraktionsmethode "Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) verwendet. Gerade Letztere ermöglicht es an Dünnschichtsystemen von nur wenigen 100 nm, eine typische Schichtdicke bei organischen Solarzellen, den Ladungstransport aber auch die Rekombination von Elektronen und Löchern zu untersuchen. Entscheidend für eine vielversprechende funktionsfähige organische BHJ Solarzelle ist dabei eine günstige Morphologie, die eine effiziente Generation von Ladungsträger, sowie deren Abführung zu den Elektroden erlaubt. Dabei wird in dieser Arbeit der Einfluss der räumlichen, als auch der der energetischen Unordnung der photoaktiven Schicht auf den Ladungstransport und der Rekombination der Ladungsträger untersucht. Das weit verbreitete Materialsystem bestehend aus Poly-3-(Hexyl) Thiophen (P3HT) und [6,6]-Phenyl C61 Buttersäure Methylester (PC61BM) dient dabei als Donator-Akzeptor Referenzsystem. Neuartige Donator- bzw. Akzeptor-Materialien und deren Potential für künftige Anwendungen in der organischen Photovoltaik werden hinsichtlich ihrer Ladungsträgereigenschaften mit dem Referenzmaterialsystem verglichen. Im Zuge der Kommerzialisierung organischer Solarzellen bzw. Solarmodulen ist die Anfälligkeit der Zellen gegenüber äußeren Umwelteinflüssen, wie Sauerstoff oder Wasser, in den Vordergrund des wissenschaftlichen Interesses gerückt. Dementsprechend wird in dieser Arbeit auch der Einfluss von synthetischer Luft auf den Transport und die Rekombination von Ladungsträgern und somit auf den Wirkungsgrad der Solarzelle untersucht und diskutiert. Schließlich wird im Rahmen dieser Arbeit eine Erweiterung der photo-CELIV Messmethode vorgestellt. Diese ermöglicht es die Lebensdauer und den Transport von Ladungsträgern in organischen Dünnschicht-Solarzellen unter realen Arbeitsbedingungen, d.h. Beleuchtung unter einer Sonne bei Raumtemperatur, zu bestimmen.
|
6 |
On the correlation between the electronic structure and transport properties of [2.2]paracyclophanes and other aromatic systems / Über die Korrelation zwischen der elektronischen Struktur und den Transporteigenschaften von [2.2]Paracyclophan und anderen aromatischen SystemenPfister, Johannes January 2011 (has links) (PDF)
Die vorliegende Arbeit präsentiert theoretische Untersuchungen zu Energie- und Ladungs-Transporteigenschaften in organischen Kristallen. Kapitel 4 behandelt Exzitonentransport in Anthracen bei dem der Fall einer schwachen Kopplung zwischen den π-Systemen vorliegt. Die elektronische Kopplung wird mit dem „monomer transition density“ (MTD) Ansatz berechnet. Aus den Kopplungen und Reorganisationsenergien werden mit der Marcus-Theorie Hüpfraten berechnet. Mit Kenntnis der Kristallstrukturen werden daraus in die experimentell zugänglichen Exzitonendiffusionslängen berechnet, deren isotroper Anteil im Rahmen der Streuung der experimentell zugänglichen Daten reproduziert werden. Auch die Anisotropie der Exzitonendiffusionslängen wird qualitativ und quantitativ im Rahmen der zu erwartenden Messgenauigkeit richtig wiedergegeben. Weiterhin enthält Kapitel 4 Untersuchungen zum Elektronen- und Lochtransport in den zwei verschiedenen Modifikationen (α und β) von Perylen. Reorganisationsenergien sowie Diffusionskonstanten wurden für beide beide Kristallstrukturen und Typen des Ladungstransports berechnet. Den besten Transport stellt dabei Lochtransport in β-Perylen dar, jedoch ist dieser stark isotrop. Die bevorzugte Transportrichtung is entlang der b-Achse der Einheitszelle mit elektronischen Kopplungen von größer als 100 meV. Allerdings gibt es hier keinerlei Lochtransport in Richtung der c-Achse. Die Diffusionskonstante in Richtung der b-Achse ist um zwei Größenordnungen größer als die in c-Richtung (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Der Ladungstransport wird sowohl für Löcher, als auch für Elektronen in beiden Perylenmodifikationen immer stark anisotrop berechnet. Um diese Resultate zu verifizieren wurden experimentelle Elektronenmobilitäten in α-Perylen mit den Simulationen verglichen. Es stellte sich eine sehr gute Übereinstimmung heraus mit Fehlern von nur maximal 27%. Wie oben gezeigt, ist es möglich Transporteigenschaften in zwischen schwach wechselwirkenden Systemen zu berechnen und zu messen. Allerdings ist es hier schwierig, die Güte der zu Grunde liegenden Kopplungsparameter genau anzugeben. Aus diesem Gunde wurde eine Zusammenarbeit über stark wechselwirkede Systeme zwischen uns sowie den Arbeitskreis von Prof. Ingo Fischer begonnen. Dort wurden [2.2]Paracyclophane und dessen Derivate untersucht um zu zeigen, wie Substitution mit Hydroxylgruppen deren Absorptionseigenschaften beeinflusst. Eine Kombination der SCS-MP2 und SCS-CC2-Methoden liefert hierbei insgesamt die besten Ergebnisse um die geometrischen und elektronischen Strukturen für Grund- und angeregte Zustände dieser Modellsysteme sowie deren Stammmolekülen Benzol und Phenol zu beschreiben. Strukturell weist nur [2.2]Paracyclophan im Grundzustand ein Doppelminimumspotenzial bzgl. Verschiebung und Verdrillung der Benzol/Phenol-einheiten untereinander auf. Alle anderen Systeme sind aufgrund ihrer Substitution weniger flexibel. Fast alle untersuchten [2.2]Paracyclophane zeigen nur geringe Strukturänderungen bei der Anregung in den S1 Zustand: Der Abstand zwischen den Ringen wird kürzer, aber qualitativ behalten sie ihre Verdrillung und Verschiebung bei, wenn auch das Ausmaß dieser Verzerrungen reduziert wird. Die Ausnahme hierbei ist p-DHPC, welches von einer verschoben Struktur im Grundzustand in eine verdrillte Struktur im angeregten Zustand übergeht. Dies hat zur Konsequenz, dass die Intensität des 0-0-Übergangs aufgrund der Franck-Condon Faktoren für p-DHPC experimentell nicht mehr beobachtet werden kann und von Verunreinigungen durch o-DHPC überdeckt wird. Die Strukturen der Paracyclophane und deren Änderung durch elektronische Übergänge werden in dieser Arbeit durch elektrostatische Potenziale sowie den antibindenen (bindenden) HOMO (LUMO) Orbitalen erklärt. Adiabatische Anregungsenergien wurden mit Nullpunktsschwingungsenergien korrigiert und liefern Genauigkeiten deren Fehler weniger als 0,1 eV beträgt. Hierbei ist zu beachten, dass eine Korrektur auf B3LYP Niveau die Ergebnisse verschlechtert und man die Berechnung der Schwingungsfrequenzen auf SCS-CC2 durchführen muss um diese Genauigkeit zu erhalten. Aufgrund dieser Rechnungen wurde eine Interpretation der experimentellen [1+1]REMPI Spektren möglich. Bandenprogressionen für die Schwingungen der Verschiebung, der Verdrillung und einer Atmung im [2.2]Paracyclophanskelett wurden identifiziert und zeigen gute Übereinstimmung zum Experiment. Diese Arbeiten zeigen, dass das Substitutionsschema von [2.2]Paracyclophanen eine erhebliche Auswirkung auf die spektroskopischen Eigenschaften haben kann. Da diese Eigenschaften direkt mit den Transporteigenschaften dieser Materialien verbunden ist, kann das hier gewonnene Verständnis der spektroskopischen Eigenschaften genutzt werden, um Materialien mit maßgeschneiderten Transporteigenschaften zu designen. Es konnte gezeigt werden, dass die SCS-CC2-Methode sehr gut geeignet ist, die zu Grunde liegende Wechselwirkung zwischen den π-Systemen vorherzusagen. / The present work presents investigations on energy and charge transport properties in organic crystals. Chapter 4 treats exciton transport in anthracene, which is an example for weakly coupled π-systems. The electronic coupling parameter is evaluated by the monomer transition density approach. With these and the reorganization energy hopping rates are calculated in the framework of the Marcus theory. Together with the knowledge of the crystal structure, these allow us to calculate the experimental accessible exciton diffusion lengths, whose isotropic part fits nicely within the scattering of experimental values found in the literature. Furthermore, the anisotropy of the exciton diffusion lengths is reproduced qualitatively and quantitatively correct. This chapter also contains studies about electron and hole transport in both polymorphs (α and β) of perylene. Reorganization energies as well as diffusion coefficients for both crystal structures and types of charge transport were calculated. The best transport is hole transport in β-perylene, but it is strongly isotropic. The preferred transport direction is along the b-axis of the unit cell with couplings of greater than 100 meV. However, there is no transport along the c-axis. The diffusion constant in b-direction is bigger by two orders of magnitude than in c-direction (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Charge transport is calculated to be strongly anisotropic for holes as well as electrons in both modifications. To verify these results experimental electron mobilities have been compared to the simulations. Good agreement was found with errors of less than 27%. As it was shown above, the calculation and measurement of transport properties between weakly coupled systems is possible. However, it is difficult to exactly determine the quality of the electronic coupling. For this reason a collaboration about strongly interacting π-systems was started between us and the research group of Prof. Ingo Fischer. There, [2.2]paracyclophanes and its derivates were investigated to show how hydroxyl substitution influences absorption properties. Overall, a combination of SCS-MP2 and SCS-CC2 performs best to address the description of geometric and electronic structures for both ground and excited states of these model systems as well as their parent compounds benzene and phenol. Only [2.2]paracyclophane shows a double minimum potential regarding a twist and shift motion between the benzene/phenol subunits towards each other. All other systems are less flexible due to their substitution pattern. Almost all [2.2]paracyclophanes display minor changes in their geometric structure upon excitation to the S1 state: The inter-ring distance shortens, but qualitatively they keep their shift and twist characteristics, although the extent of these deformations diminishes. The exception is p-DHPC, which turns from a shifted ground state structure into a twisted excited state structure. Consequently, the intensity of the 0-0 transition cannot be observed experimentally due to small Franck-Condon factors and impurities of o-DHPC. In the present thesis, the structures and their changes due to excitation are explained by electrostatic potentials as well as antibonding (bonding) HOMO (LUMO) orbitals. Adiabatic excitation energies have been corrected by ZPEs and result in accuracies with errors smaller than 0.1 eV. Note that corrections on the B3LYP level worsen the results and one has to apply SCS-CC2 to achieve this accuracy. These calculations allow an interpretation of the experimental [1+1]REMPI spectra. Band progressions of the twist, shift and breathing of the [2.2]paracyclophane skeleton vibrations have been identified and show good agreement to the experiment. This work shows that the substitution pattern in [2.2]paracyclophanes can have a significant impact on spectroscopic properties. Because these properties are directly linked to the transport properties of these materials, the hereby gained insight can be used to design materials with customized transport properties. It was shown that the SCS-CC2 method is very appropriate to predict the interaction between the π-systems
|
7 |
Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und Dünnschichten / Microscopic charge transport mechanisms and exciton annihilation in organic thin films and single crystalsHansen, Nis Hauke January 2017 (has links) (PDF)
Um die Natur der Transportdynamik von Ladungsträgern auch auf mikroskopischen Längenskalen nicht-invasiv untersuchen zu können, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: löschen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen Dünnschicht durch die injizierten und akkumulierten Löcher in einer Transistorgeometrie analysiert. Diese Zusammenführung zweier Methoden - der elektrischen Charakterisierung von Dünnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die Änderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungsträgern. Dadurch werden räumlich aufgelöste Informationen über die Ladungsverteilung und deren Spannungsabhängigkeit im Transistorkanal zugänglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngrößen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngrößen alleine ermöglichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen möglich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten können. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungsträgerrekombination, Triplett-Übergänge oder Rekombination an Störstellen oder metallischen Grenzflächen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zuständen mit Elektronen und Löchern.
Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare Überlapp sowie die Reorganisationsenergie in derselben Größenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie ermöglichen die Analyse der räumlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen. / In order to study charge transport in organic thin-film transistors on a microscopic length scale noninvasively, photoluminescence quenching by injected holes in transistor geometry was analyzed. The combination of these two techniques – the electrical characterization of transistors and the photoluminescence spectroscopy – captures the variation of radiative recombination of excitons, which results from the interaction with the accumulated charge carriers. Thereby, spatially resolved information about the charge distribution and its voltage dependence in the transistor channel become accessible. By comparison with the macroscopic electrical parameters, such as the threshold voltage or the turn-on voltage, the mode of operation of the transistors can thus be described in more detail than the characteristic values alone permit. In addition, the quantification of these microscopic interactions becomes possible, which can occur, for example, as a loss channel in organic photovoltaic cells and organic light-emitting diodes. The delimitation to other dissipative processes, such as exciton-exciton annihilation, charge carrier recombination, triplet transitions or recombination at impurities or metallic interfaces, allows the detailed analysis of the interaction of optically excited states with electrons and holes.
The second focus of this work is on the transport properties of the naphthalene diimide Cl2-NDI in which the molecular overlap as well as the reorganization energy are of the same order of magnitude of approximately 0.1 eV. In order to close experimentally on the microscopic transport, after the optimization of crystal growth, single crystal transistors are produced by means of which the mobility along different crystallographic directions can be measured as a function of the temperature. The single crystal nature of the samples and the special transistor geometry allow the analysis of the spatial anisotropy of the current flow. The measured mobility tensor is then compared with simulated tensors based on Levich-Jortner rates to infer the central charge transfer mechanism.
|
8 |
Numerical calculations for electronic transport through molecular systemsDahlke, Robert. Unknown Date (has links) (PDF)
University, Diss., 2004--München.
|
9 |
Nonlinear and chaotic front dynamics in semiconductor superlatticesAmann, Andreas. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Berlin.
|
10 |
Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde / A new method for detecting ballistic transport in the scanning tunneling microscope: The molecular nanoprobeLeisegang, Markus January 2021 (has links) (PDF)
Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird. / Low-loss charge carrier transport is of great interest for the realization of efficient and small electronic components. Improvements would minimize heat generation and reduce energy consumption at the same time. However, individual scattering processes that determine the loss in charge carrier transport occur on length scales from nanometers to micrometers. To study these in detail, measurement methods with high temporal or spatial resolution are required. For the latter, few established experiments exist, often based on scanning tunneling microscopy, which are however subject to various limitations. In order to improve the possibilities of detecting charge carrier transport at distances of the mean free path and thus in the ballistic regime, the molecular nanoprobe was characterized and established in this dissertation. This measurement technique uses a single molecule as a detector for charge carriers, which are injected into the substrate under investigation with the scanning tunneling microscope (STM) tip a few nanometers away from the molecule. The high resolution of the STM combined with the small size of the molecular detector allows atomic control of transport paths over a few nanometers. The first part of this work is devoted to the characterization of the molecular nanoprobe. For this purpose, the electronic properties of three phthalocyanines are first investigated by scanning tunneling spectroscopy, which will be applied in the following studies to characterize the molecular detector. The subsequent analysis of the potential landscape for tautomerization within H2Pc and HPc reveals that the N-H stretching mode underlies an efficient switching process. Based on these findings, the influence of the direct environment on the molecular switch is analyzed by means of individual adatoms as well as the substrate itself. In both cases, a significant change in the potential landscape of the tautomerization is shown. Subsequently, the influence of geometric properties of the molecule itself is investigated, revealing a decoupling from the substrate due to three-dimensional tert-butyl substituents. In addition, the comparison through naphthalocyanine to phthalocyanine reveals the influence of lateral expansion on the detection area, confirming a non-point molecular detector. In the last section, two applications of the molecular nanoprobe are presented. First, using phthalocyanine on Ag(111), it is demonstrated that the interference of ballistic charge carriers at distances of a few nanometers is detectable with this technique. In the second part, it is shown that the anisotropic Pd(110) surface structure leads to a strong modulation of the ballistic transport on the atomic scale.
|
Page generated in 0.0843 seconds