• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 19
  • 8
  • Tagged with
  • 48
  • 26
  • 23
  • 23
  • 19
  • 18
  • 14
  • 14
  • 14
  • 13
  • 12
  • 10
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthese und Charakterisierung von phosphoreszenten Terpolymeren und nichtkonjugierten Matrixpolymeren für effiziente polymere Leuchtdioden / Synthesis and characterization of phosphoreszent terpolymers and nonconjugated matrixpolymers for efficient polymer light emitting diodes

Thesen, Manuel Wolfram January 2010 (has links)
Mit Seitenkettenpolystyrenen wurde ein neues Synthesekonzept für phosphoreszente polymere LED-Materialien aufgestellt und experimentell verifiziert. Zunächst erfolgten auf Grundlage strukturell einfacher Verbindungen Untersuchungen zum Einfluss von Spacern zwischen aktiven Seitengruppen und dem Polystyrenrückgrat. Es wurden Synthesemethoden für die Monomere etabliert, durch die aktive Elemente - Elektronen- und Lochleiter - mit und ohne diesen Spacer zugänglich sind. Durch Kombination dieser Monomere waren unter Hinzunahme von polymerisierbaren Iridium-Komplexen in unterschiedlicher Emissionswellenlänge statistische Terpolymere darstellbar. Es wurde gezeigt, dass die Realisierung bestimmter Verhältnisse zwischen Loch-, Elektronenleiter und Triplettemitter in ausreichender Molmasse möglich ist. Die Glasstufen der Polymere zeigten eine deutliche Strukturabhängigkeit. Auf die Lage der Grenzorbitale übten die Spacer nahezu keinen Einfluss aus. Die unterschiedlichen Makromoleküle kamen in polymeren Licht emittierenden Dioden (PLEDs) zum Einsatz, wobei ein deutlicher Einfluss der Spacereinheiten auf die Leistungscharakteristik der PLEDs festzustellen war: Sowohl Effizienz, Leuchtdichte wie auch Stromdichte waren durch den Einsatz der kompakten Makromoleküle ohne Spacer deutlich höher. Diese Beobachtungen begründeten sich hauptsächlich in der Verwendung der aliphatischen Spacer, die den Anteil im Polymer erhöhten, der keine Konjugation und damit elektrisch isolierende Eigenschaften besaß. Diese Schlussfolgerungen waren mit allen drei realisierten Emissionsfarben grün, rot und blau verifizierbar. Die besten Messergebnisse erzielte eine PLED aus einem grün emittierenden und spacerlosen Terpolymer mit einer Stromeffizienz von etwa 28 cd A-1 (bei 6 V) und einer Leuchtdichte von 3200 cd m-2 (bei 8 V). Ausgehend von obigen Ergebnissen konnten neue Matrixmaterialien aus dem Bereich verdampfbarer Moleküle geringer Molmasse in das Polystyrenseitenkettenkonzept integriert werden. Es wurden Strukturvariationen sowohl von loch- wie auch von elektronenleitenden Verbindungen als Homopolymere dargestellt und als molekular dotierte Systeme in PLEDs untersucht. Sieben verschiedene lochleitende Polymere mit Triarylamin-Grundkörper und drei elektronendefizitäre Polymere auf der Basis von Phenylbenzimidazol konnten erfolgreich in den Polymeransatz integriert werden. Spektroskopische und elektrochemische Untersuchungen zeigten kaum eine Veränderung der Charakteristika zwischen verdampfbaren Molekülen und den dargestellten Makromolekülen. Diese ladungstransportierenden Makro-moleküle wurden als polymere Matrizes molekular dotiert und lösungsbasiert zu Einschicht-PLEDs verarbeitet. Als aussichtsreichstes Lochleiterpolymer dieser Reihe, mit einer Strom-effizenz von etwa 33 cd A-1 (bei 8 V) und einer Leuchtdichte von 6700 cd m-2 (bei 10 V), stellte sich ein Triarylaminderivat mit Carbazolsubstituenten heraus. Als geeignetstes Matrixmaterial für die Elektronenleitung wurde ein meta-verknüpftes Di-Phenylbenzimidazol ausfindig gemacht, das in der PLED eine Stromeffizienz von etwa 20 cd A-1 (bei 8 V) und eine Leuchtdichte von 7100 cd m-2 (bei 10 V) erzielte. Anschließend wurden die geeignetsten Monomere zu Copolymeren kombiniert: Die lochleitende Einheit bildete ein carbazolylsubstituiertes Triarylamin und die elektronen-leitende Einheit war ein disubstituiertes Phenylbenzimidazol. Dieses Copolymer diente im Folgenden dazu, PLEDs zu realisieren und die Leistungsdaten mit denen eines Homopolymer-blends zu vergleichen, wobei der Blend die bessere Leistungscharakteristik zeigte. Mit dem Homopolymerblend waren Bauteileffizienzen von annähernd 30 cd A-1 (bei 10 V) und Leuchtdichten von 6800 cd m-2 neben einer Verringerung der Einsatzspannung realisierbar. Für die abschließende Darstellung bipolarer Blockcopolymere wurde auf die Nitroxid-vermittelte Polymerisation zurückgegriffen. Mit dieser Technik waren kontrollierte radikalische Polymersiationen mit ausgewählten Monomeren in unterschiedlichen Block-längen durchführbar. Diese Blockcopolymere kamen als molekular dotierte Matrizes in phosphoreszenten grün emittierenden PLEDs zum Einsatz. Die Bauteile wurden sowohl mit statistischen Copolymeren, wie auch mit Homopolymerblends in gleicher Zusammensetzung aber unterschiedlichem Polymerisationsgrad hinsichtlich der Leistungscharakteristik verglichen. Kernaussage dieser Untersuchungen ist, dass hochmolekulare Systeme eine bessere Leistungscharakteristik aufweisen als niedermolekulare Matrizes. Über Rasterkraft-mikroskopie konnte eine Phasenseparation in einem Größenbereich von etwa 10 nm für den hochmolekularen Homopolymerblend nachgewiesen werden. Für die Blockcopolymere war es nicht möglich eine Phasenseparation zu beobachten, was vorwiegend auf deren zu geringe Blocklänge zurückgeführt wurde. / A new synthetic approach for the synthesis of side chain polystyrenes was established and their use as phosphorescent polymers for polymer light emitting diodes (PLEDs) is shown by experiments. An assay was introduced to clarify influences on electroluminescent behavior for RGB-colored phosphorescent terpolymers with N,N-Di-p-tolyl-aniline as hole-transporting unit, 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tert-BuPBD) as electron-transporting unit, and different iridium complexes in RGB-colors as triplet emitting materials. All monomers were attached with spacer moieties to the “para” position of a polystyrene. PLEDs were built to study the electro-optical behavior of these materials. The gist was a remarkable influence of hexyl-spacer units to the PLED performance. For all three colors only very restricted PLED performances were found. In comparison RGB-terpolymers were synthesized with directly attached charge transport materials to the polymer backbone. For this directly linked systems efficiencies were 28 cd A−1 @ 6 V (green), 4.9 cd A−1 @ 5 V (red) and 4.3 cd A−1 @ 6 V (bluish). In summary it is assumed that an improved charge percolation pathways regarding to the higher content of semiconducting molecules and an improved charge transfer to the phosphorescent dopand in the case of the copolymers without spacers are responsible for the better device performance comparing the copolymers with hexyl spacers. It was found that the approach of the directly connected charge transport materials at the nonconjugated styrene polymer backbone is favored for further investigations as shown in the following. A series of styrene derived monomers with triphenylamine-based units, and their polymers have been synthesized and compared with the well-known structure of polymer of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine with respect to their hole-transporting behavior in PLEDs. A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3-methylphenyl-aniline, 1- and 2-naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems. It is demonstrated that two polymers are excellent hole-transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole-substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A−1 and a brightness of 6700 cd m−2 at 10 V is accessible. The phenothiazine-functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well-known polymer of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A−1 and a brightness of 2500 cd m−2 (10 V). Furthermore, novel styrene functionalized monomers with phenylbenzo[d]imidazole units and the corresponding homopolymers are prepared. The macromolecules are used as matrices for phosphorescent dopants to prepare PLEDs. The devices exhibit current efficiencies up to 38.5 cd A−1 at 100 cd m−2 and maximum luminances of 7400 cd m−2 at 10 V. Afterwards the most efficient monomers of this investigations were combined and statistical copolymers were synthesized. As hole-transporting monomer the carbazole substituted triarylamine and as electron-transporting monomer a disubstituted phenylbenzoimidazole was selected. This statistical copolymer was used in the following as matrix material for phosporescent PLEDs and the device performance was compared with a matrix system of a polymer blend matrix system of corresponding homopolymers. With this homopolymer blend efficiencies of about 30 cd A-1 at 10 V and luminances of 6800 cd m-2 beside a decreased onset voltage were realized. Finally bipolar blockcopolymers of structural basic monomers were synthesized via nitroxide mediated polymerization. With these technique and the chosen hole- and electron-transporting monomers a controlled radical polymerization was realized leading to blockcopolymers in different block lengths. These blockcopolymers were used as molecular doped matrix systems in green phosphoreszent PLEDs. The devices were compared in regard to their performances with PLEDs made of statistical copolymers and homopolymer blends. It was found that high molecular systems show a better device performance compared to low molecular polymer matrices. With atomic force microscopy it is shown that a phase separation takes place for the high molecular blend of homopolymers. For the synthesized blockcopolymers no phase separation could be verified, mainly because of the comparatively low molecular weight of these systems.
32

Thiophen und Benzodithiophen basierte organische Halbleiter für aus Lösung prozessierbare Feldeffekttransistoren / Thiophene and benzodithiophene based organic semiconductors for solution processable field effect transistors

Bilkay, Taybet January 2013 (has links)
Diese Arbeit befasst sich mit der Synthese und Charakterisierung von organolöslichen Thiophen und Benzodithiophen basierten Materialien und ihrer Anwendung als aktive lochleitende Halbleiterschichten in Feldeffekttransistoren. Im ersten Teil der Arbeit wird durch eine gezielte Modifikation des Thiophengrundgerüstes eine neue Comonomer-Einheit für die Synthese von Thiophen basierten Copolymeren erfolgreich dargestellt. Die hydrophoben Hexylgruppen in der 3-Position des Thiophens werden teilweise durch hydrophile 3,6-Dioxaheptylgruppen ersetzt. Über die Grignard-Metathese nach McCullough werden statistische Copolymere mit unterschiedlichen molaren Anteilen vom hydrophoben Hexyl- und hydrophilem 3,6-Dioxaheptylgruppen 1:1 (P-1), 1:2 (P-2) und 2:1 (P-3) erfolgreich hergestellt. Auch die Synthese eines definierten Blockcopolymers BP-1 durch sequentielle Addition der Comonomere wird realisiert. Optische und elektrochemische Eigenschaften der neuartigen Copolymere sind vergleichbar mit P3HT. Mit allen Copolymeren wird ein charakteristisches Transistorverhalten in einem Top-Gate/Bottom-Kontakt-Aufbau erhalten. Dabei werden mit P-1 als die aktive Halbleiterschicht im Bauteil, PMMA als Dielektrikum und Silber als Gate-Elektrode Mobilitäten von bis zu 10-2 cm2/Vs erzielt. Als Folge der optimierten Grenzfläche zwischen Dielektrikum und Halbleiter wird eine Verbesserung der Luftstabilität der Transistoren über mehrere Monate festgestellt. Im zweiten Teil der Arbeit werden Benzodithiophen basierte organische Materialien hergestellt. Für die Synthese der neuartigen Benzodithiophen-Derivate wird die Schlüsselverbindung TIPS-BDT in guter Ausbeute dargestellt. Die Difunktionalisierung von TIPS-BDT in den 2,6-Positionen über eine elektrophile Substitution liefert die gewünschten Dibrom- und Distannylmonomere. Zunächst werden über die Stille-Reaktion alternierende Copolymere mit alkylierten Fluoren- und Chinoxalin-Einheiten realisiert. Alle Copolymere zeichnen sich durch eine gute Löslichkeit in gängigen organischen Lösungsmitteln, hohe thermische Stabilität und durch gute Filmbildungseigenschaften aus. Des Weiteren sind alle Copolymere mit HOMO Lagen höher als -6.3 eV, verglichen mit den Thiophen basierten Copolymeren (P-1 bis P-3), sehr oxidationsstabil. Diese Copolymere zeigen amorphes Verhalten in den Halbleiterschichten in OFETs auf und es werden Mobilitäten bis zu 10-4 cm2/Vs erreicht. Eine Abhängigkeit der Bauteil-Leistung von dem Zinngehalt-Rest im Polymer wird nachgewiesen. Ein Zinngehalt von über 0.6 % kann enormen Einfluss auf die Mobilität ausüben, da die funktionellen SnMe3-Gruppen als Fallenzustände wirken können. Alternativ wird das alternierende TIPS-BDT/Fluoren-Copolymer P-5-Stille nach der Suzuki-Methode polymerisiert. Mit P-5-Suzuki als die aktive organische Halbleiterschicht im OFET wird die höchste Mobilität von 10-2 cm2/Vs erzielt. Diese Mobilität ist somit um zwei Größenordnungen höher als bei P-5-Stille, da die Fallenzustände in diesem Fall minimiert werden und folglich der Ladungstransport verbessert wird. Sowohl das Homopolymer P-12 als auch das Copolymer mit dem aromatischen Akzeptor Benzothiadiazol P-9 führen zu schwerlöslichen Polymeren. Aus diesem Grund werden einerseits Terpolymere aus TIPS-BDT/Fluoren/BTD-Einheiten P-10 und P-11 aufgebaut und andererseits wird versucht die TIPS-BDT-Einheit in die Seitenkette des Styrols einzubringen. Mit der Einführung von BTD in die Hauptpolymerkette werden insbesondere die Absorptions- und die elektrochemischen Eigenschaften beeinflusst. Im Vergleich zu dem TIPS-BDT/Fluoren-Copolymer reicht die Absorption bis in den sichtbaren Bereich und die LUMO Lage wird zu niederen Werten verschoben. Eine Verbesserung der Leistung in den Bauteilen wird jedoch nicht festgestellt. Die erfolgreiche erstmalige Synthese von TIPS-BDT als Seitenkettenpolymer an Styrol P-13 führt zu einem löslichen und amorphen Polymer mit vergleichbaren Mobilitäten von Styrol basierten Polymeren (µ = 10-5 cm2/Vs) im OFET. Ein weiteres Ziel dieser Arbeit ist die Synthese von niedermolekularen organolöslichen Benzodithiophen-Derivaten. Über Suzuki- und Stille-Reaktionen ist es erstmals möglich, verschiedenartige Aromaten über eine σ-Bindung an TIPS-BDT in den 2,6-Positionen zu knüpfen. Die UV/VIS-Untersuchungen zeigen, dass die Absorption durch die Verlängerung der π-Konjugationslänge zu höheren Wellenlängen verschoben wird. Darüber hinaus ist es möglich, thermisch vernetzbare Gruppen wie Allyloxy in das Molekülgerüst einzubauen. Das Einführen von F-Atomen in das Molekülgerüst resultiert in einer verstärkten Packungsordnung im Fluorbenzen funktionalisiertem TIPS-BDT (SM-4) im Festkörper mit sehr guten elektronischen Eigenschaften im OFET, wobei Mobilitäten bis zu 0.09 cm2/Vs erreicht werden. / This work describes the synthesis and characterization of organo-soluble thiophene and benzodithiophene based materials and their application as hole-transporting active semiconductor layers in field effect transistors. The first part of this work introduces the targeted modification of the thiophene base unit, obtaining new comonomers for the corresponding copolymers. The hydrophobic hexyl groups in the 3-position of thiophene are partially replaced by hydrophilic 3,6-Dioxaheptyl groups. Using the Grignard metathesis developed by McCullough, statistical copolymers with different molar ratios of hydrophobic and hydrophilic side groups 1:1 (P-1), 1:2 (P-2) and 2:1 (P-3) are synthesized. Furthermore a defined blockcopolymer is synthesized by a sequential comonomer addition. Optical and electrochemical properties of the novel copolymers are comparable to the homopolymer P3HT. All copolymers show clearly transistor characteristics in a top-gate/bottom-contact configuration. Devices with P-1 as active semiconductor layer, PMMA as dielectric and silver as the gate electrode show mobilities up to 10-2 cm2/Vs. As a result of the optimized semiconductor and dielectric interface an improvement of the air stability of the transistors is observed for several months. The second part describes the synthesis of benzodithiophene based organic materials. For the synthesis of the novel benzodithiophene-derivatives the key intermediate TIPS-BDT is obtained in high yields. A difunctionalization of TIPS-BDT in 2,6-position is observed by electrophilic substitution reactions and provided the desired dibromo- and distannyl-monomers. Via Stille-reaction alternated copolymers with alkylated fluorene and quinoxaline groups are synthesized. All copolymers are soluble in common organic solvents, show high thermal stability and good film forming properties. Furthermore all copolymers have HOMO values above -6.3 eV and are more oxidation stable compared to the thiophene based copolymers (P-1 up to P-3). These copolymers show an amorphous behavior as semiconductor layer in OFETs and mobilities up to 10-4 cm2/Vs are observed. A correlation between the device performance and the tin amount in the polymer could be demonstrated. Hence the functional SnMe3 groups can act as traps, a tin amount higher than 0.6 % can negatively influence the mobility. Alternatively the alternated TIPS-BDT/Fluoren-copolymer P-5-Stille is polymerized by the Suzuki-Method. The highest mobility of 10-2 cm2/Vs is obtained with P-5-Suzuki as active semiconductor layer in OFET. In comparison to P-5-Stille this mobility is two orders of magnitude higher, because in P-5-Suzuki traps are minimized and the charge transfer is improved. The synthesis of homopolymer P-12 as well as the copolymer with aromatic benzothiadiazole P-9 resulted in insoluble polymers. For this reason terpolymers containing TIPS-BDT/Fluoren/BTD units are designed. Additionally an attempt has been made to introduce the TIPS-BDT unit in the side chain of styrene. The introduction of BTD in the conjugated main chain influences especially the absorption and electrochemical properties. Compared to TIPS-BDT/Fluoren-copolymer the absorption of the terpolymer is shifted to the visible region and the LUMO values decreased. An improvement in the device performance is not observed. A side chain polystyrene containing TIPS-BDT P-13 is synthesized successfully. The amorphous and soluble P-13 showed comparable mobilities (µ = 10-5 cm2/Vs) as known styrene based polymers. A further aim of this work is the synthesis of organo-soluble benzodithiophene based small molecules. Using Suzuki- and Stille-reactions different aromatic cores as endcappers are connected by σ-bonds at the 2,6-position of TIPS-BDT. UV/VIS-measurements show a red-shift of the absorption maxima with extension of the π-conjugated system. Furthermore it is possible to introduce thermal cross linkable allyloxy-groups. The F-atoms in the molecule lead to stronger intermolecular interactions in the solid state, which improves the electronic properties and lead to high mobilities up to 0.09 cm2/Vs for TIPS-BDT (SM-4).
33

Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells

Schubert, Marcel January 2014 (has links)
Donor-acceptor (D-A) copolymers have revolutionized the field of organic electronics over the last decade. Comprised of a electron rich and an electron deficient molecular unit, these copolymers facilitate the systematic modification of the material's optoelectronic properties. The ability to tune the optical band gap and to optimize the molecular frontier orbitals as well as the manifold of structural sites that enable chemical modifications has created a tremendous variety of copolymer structures. Today, these materials reach or even exceed the performance of amorphous inorganic semiconductors. Most impressively, the charge carrier mobility of D-A copolymers has been pushed to the technologically important value of 10 cm^{2}V^{-1}s^{-1}. Furthermore, owed to their enormous variability they are the material of choice for the donor component in organic solar cells, which have recently surpassed the efficiency threshold of 10%. Because of the great number of available D-A copolymers and due to their fast chemical evolution, there is a significant lack of understanding of the fundamental physical properties of these materials. Furthermore, the complex chemical and electronic structure of D-A copolymers in combination with their semi-crystalline morphology impede a straightforward identification of the microscopic origin of their superior performance. In this thesis, two aspects of prototype D-A copolymers were analysed. These are the investigation of electron transport in several copolymers and the application of low band gap copolymers as acceptor component in organic solar cells. In the first part, the investigation of a series of chemically modified fluorene-based copolymers is presented. The charge carrier mobility varies strongly between the different derivatives, although only moderate structural changes on the copolymers structure were made. Furthermore, rather unusual photocurrent transients were observed for one of the copolymers. Numerical simulations of the experimental results reveal that this behavior arises from a severe trapping of electrons in an exponential distribution of trap states. Based on the comparison of simulation and experiment, the general impact of charge carrier trapping on the shape of photo-CELIV and time-of-flight transients is discussed. In addition, the high performance naphthalenediimide (NDI)-based copolymer P(NDI2OD-T2) was characterized. It is shown that the copolymer posses one of the highest electron mobilities reported so far, which makes it attractive to be used as the electron accepting component in organic photovoltaic cells.par Solar cells were prepared from two NDI-containing copolymers, blended with the hole transporting polymer P3HT. I demonstrate that the use of appropriate, high boiling point solvents can significantly increase the power conversion efficiency of these devices. Spectroscopic studies reveal that the pre-aggregation of the copolymers is suppressed in these solvents, which has a strong impact on the blend morphology. Finally, a systematic study of P3HT:P(NDI2OD-T2) blends is presented, which quantifies the processes that limit the efficiency of devices. The major loss channel for excited states was determined by transient and steady state spectroscopic investigations: the majority of initially generated electron-hole pairs is annihilated by an ultrafast geminate recombination process. Furthermore, exciton self-trapping in P(NDI2OD-T2) domains account for an additional reduction of the efficiency. The correlation of the photocurrent to microscopic morphology parameters was used to disclose the factors that limit the charge generation efficiency. Our results suggest that the orientation of the donor and acceptor crystallites relative to each other represents the main factor that determines the free charge carrier yield in this material system. This provides an explanation for the overall low efficiencies that are generally observed in all-polymer solar cells. / Donator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar.
34

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 23 October 2015 (has links) (PDF)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures. / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.
35

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 12 June 2015 (has links)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography
36

Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal-Organic Framework Films towards Directional Charge Transport

Wang, Zhiyong, Walter, Lisa S., Wang, Mao, St. Petkov, Petko, Liang, Baokun, Qi, Haoyuan, Nguyen, Nguyen Ngan, Hambsch, Mike, Zhong, Haixia, Wang, Mingchao, Park, SangWook, Renn, Lukas, Watanabe, Kenji, Taniguchi, Takashi, Mannsfeld, Stefan C. B., Heine, Thomas, Kaiser, Ute, Zhou, Shengqiang, Weitz, Ralf Thomas, Feng, Xinliang, Dong, Renhao 15 August 2022 (has links)
The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables an access to direct charge transport, dial-in lateral/vertical electronic devices and unveil transport mechanisms, but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M=Cu or Fe) with an unprecedented edge-on layer-orientation at the air/water interface. The edge-on structure for-mation is guided by the pre-organization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods, and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2-size) Hall-effect measurement reveals a Hall mobility of ~4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the develop-ment of various optoelectronic applications and the exploration of unique transport properties.
37

Materialeigenschaften von Zinkmagnesiumoxinitrid und Analyse des Ladungstransports in amorphen oxidischen Halbleitern mit einem erweiterten Random Band-Edge-Modell

Welk, Antonia 04 November 2022 (has links)
In der vorliegenden Arbeit wird die Gruppe der amorphen oxidischen Halbleiter um das multi-kationische und multi-anionische Zinkmagnesiumoxinitrid erweitert und der Ladungstransport für amorphes Zink-Zinnoxid, amorphes Zinkoxinitrid und Zinkmagnesiumoxinitrid mit einem \textit{Random Band-Edge}-Modell beschrieben. \\ % Im ersten Teil der Arbeit werden Zinkmagnesiumoxinitrid-Dünnfilme mit einem reaktiven Magnetron Co-Sputterverfahren abgeschieden und anschließend im Hinblick auf ihre strukturellen, optischen und elektrischen Eigenschaften untersucht. Der Magnesiumgehalt in den Dünnfilmen wird einmal durch die Leistung am Magnesiumtarget und einmal über die Abscheidung eines kontinuierlichen Kompositionsgradienten variiert. Mit Röntgen\-diffrakto\-metrie wird überprüft, ob sich im Vergleich zu amorphem Zinkoxinitrid durch Zugabe von Magnesiumkationen kristalline Phasen bilden. Mit spektroskopischer Ellipsometrie wird die dielektrische Funktion von Zinkoxinitrid und Zinkmagnesiumoxinitrid bestimmt und so der Einfluss der Magnesiumkationen auf das Absorptionsverhalten untersucht. Die Ladungsträgerkonzentration und Hall-Mobilität werden mit Hall-Effekt Messungen bestimmt und in Abhängigkeit vom Magnesiumgehalt dargestellt. Neben der Variation des Magnesiumgehalts wird der Einfluss von molekularem Stickstoffgas, das Angebot von Stickstoffradikalen mit einer Radiofrequenz-Plasmaquelle und die Auswirkungen der Targeterosion auf die elektrischen Eigenschaften der Zink\-magnesium\-oxinitrid-Dünnfilme untersucht.\\ % Im zweiten Teil der Arbeit wird eine Erweiterung des \textit{Random Band-Edge}-Modells von Nenashev \textit{et al.} [Phys. Rev. B 100, 125202 (2019)] zur Beschreibung des Ladungstransports in amorphen oxidischen Halbleitern eingeführt. Mit dem Modell werden die Potentialfluktuationen der Mobilitätskante quantifiziert. Außerdem werden theoretische Modellparameter für die intrinsische Bandmobilität, das Femilevel und die Dichte lokalisierter Defektzustände an der Mobilitätskante bestimmt. Dafür werden temperaturabhängige Hall-Effekt Daten von amorphem Zink-Zinnoxid, Zinkoxinitrid und Zinkmagnesiumoxinitrid ausgewertet. Für Zink-Zinnoxid werden drei Probenserien mit jeweils einem variierenden Prozessparameter evaluiert: das Zn:Sn-Kationenverhältnis und der Sauerstoffpartialdruck für eine Abscheidung mit der gepulsten Laserdeposition und der Gesamtdruck für das Magnetronsputterverfahren. Daneben wird Zinkoxinitrid mit einer Variation der Substrattemperatur und Zinkmagnesiumoxinitrid mit einer Variation der Magnesiumkationenkonzentration modelliert.:1 Einleitung 2 Grundlagen 2.1 Amorphe oxidische Halbleiter 2.2 Defekte in amorphen oxidischen Halbleitern 2.3 Amorphe oxiische Halbleiter im Detail 2.4 Ladunstransport in amrophen oxidischen Halbeleitern - eine Übersicht 2.5 Random Band-Edge-Modell nach Nenashev et al. 3 Methoden 3.1 Magnetronsputterverfahren 3.2 Chemische und strukturelle Charakterisierung 3.3 Optische Charakterisierung 3.4 Elektrische Charakterisierung 4 ZnMgON-Dünnfilme 4.1 Chemische Komposition 4.2 Strukturelle Eigenschaften 4.3 Optische Eigenschaften 4.4 Elektrische Eigenschaften 4.5 ZnMgON -Untersuchung der Prozessparameter im Detail 4.6 Diskussion und Zusammenfassung - ZnMgON-Dünnfilme 4.7 Abschätzung der Potentialfluktuationen durch einen Vergleich zwischen Hall- und Drude-Mobilität 5 Erweiterung des Random Band-Edge-Modells 5.1 Variation der Modellparameter des erweiterten RBE-Modells 6 Analyse des Ladungstransports in AOS mit dem erweiterten RBE-Modell 6.1 a-IGZO - Modellierung der elektrischen Transporteigenschaften 6.2 a-ZTO - Modellierung der elektrischen Transporteigenschaften 6.3 a-ZnON - Modellierung der elektrischen Transporteigenschaften 6.4 ZnMgON - Modellierung der elektrischen Transporteigenschaften 6.5 Diskussion 6.6 Zusammenfassung - Erweiterung des RBE-Modells 7 Zusammenfassung und Ausblick / In the present work, the amorphous oxide semiconductor zinc magnesium oxynitride, as a multi-cationic and multi-anionic compound, is deposited and characterized. Further, the electrical transport properties of amorphous zinc tin oxide, amorphous zinc oxynitride and zinc magnesium oxynitride are described by an extended \textit{random band-edge} model.\\ % In the first part of this work, zinc magnesium oxynitride thin films are deposited by reactive magnetron co-sputtering and are subsequently investigated with regard to their structural, optical and electrical properties. The magnesium content in the thin films is varied by the power at the magnesium target and by depositing a continuous composition gradient. X-ray diffractometry is used to check whether crystalline phases occur due to the addition of magnesium cations. Spectroscopic ellipsometry is used to determine the dielectric function of zinc oxynitride and zinc magnesium oxynitride to investigate the influence of magnesium cations on the absorption behavior. The charge carrier concentration and Hall-mobility are determined with Hall-effect measurements and are presented as a function of magnesium content. In addition to the variation of magnesium content, the influence of molecular nitrogen gas, the supply of nitrogen radicals with a radio frequency plasma source, and the effect of target poisoning on the electrical properties of zinc magnesium oxynitride thin films are investigated.\\ % In the second part of the work, an extension of the \textit{random band-edge} model by Nenashev \textit{et al.} [Phys. Rev. B 100, 125202 (2019)] is proposed to analyze the charge carrier transport in amorphous oxide semiconductors. The model allows quantifying the potential fluctuations of the mobility edge. Besides this, theoretical model parameters as the intrinsic band mobility, the Fermi level, and the density of localized defect states at the mobility edge are determined. Therefore, temperature-dependent Hall effect data of amorphous zinc tin oxide, zinc oxynitride and zinc magnesium oxynitride are evaluated. For zinc tin oxide three different sample series are evaluated: with Zn:Sn cation and oxygen partial pressure variation for a pulsed laser deposition process and with variation of the total pressure for a magnetron sputtering process. In addition, zinc oxynitride thin films with a variation of substrate temperature and zinc magnesium oxynitride thin films with a variation of magnesium cation concentration are modeled.:1 Einleitung 2 Grundlagen 2.1 Amorphe oxidische Halbleiter 2.2 Defekte in amorphen oxidischen Halbleitern 2.3 Amorphe oxiische Halbleiter im Detail 2.4 Ladunstransport in amrophen oxidischen Halbeleitern - eine Übersicht 2.5 Random Band-Edge-Modell nach Nenashev et al. 3 Methoden 3.1 Magnetronsputterverfahren 3.2 Chemische und strukturelle Charakterisierung 3.3 Optische Charakterisierung 3.4 Elektrische Charakterisierung 4 ZnMgON-Dünnfilme 4.1 Chemische Komposition 4.2 Strukturelle Eigenschaften 4.3 Optische Eigenschaften 4.4 Elektrische Eigenschaften 4.5 ZnMgON -Untersuchung der Prozessparameter im Detail 4.6 Diskussion und Zusammenfassung - ZnMgON-Dünnfilme 4.7 Abschätzung der Potentialfluktuationen durch einen Vergleich zwischen Hall- und Drude-Mobilität 5 Erweiterung des Random Band-Edge-Modells 5.1 Variation der Modellparameter des erweiterten RBE-Modells 6 Analyse des Ladungstransports in AOS mit dem erweiterten RBE-Modell 6.1 a-IGZO - Modellierung der elektrischen Transporteigenschaften 6.2 a-ZTO - Modellierung der elektrischen Transporteigenschaften 6.3 a-ZnON - Modellierung der elektrischen Transporteigenschaften 6.4 ZnMgON - Modellierung der elektrischen Transporteigenschaften 6.5 Diskussion 6.6 Zusammenfassung - Erweiterung des RBE-Modells 7 Zusammenfassung und Ausblick
38

The Molecular Organisation of Non-Fullerene Acceptors: from Single Crystals to Solar Cells

Mondelli, Pierluigi 22 April 2024 (has links)
The growing concern about climate change is pushing the global community towards greener solutions to cut down the greenhouse gases emissions. As such, producing energy from sustainable sources becomes mandatory to achieve the net zero emissions goal by 2050, as set by the United Nations. Solar panels offer the possibility to generate power from light harvesting, but it’s the use of organic materials that offers great advantages in terms of functionality and life-cycle. In particular, organic semiconductors properties such as their tunable colours, lightweight, flexibility, and semi-transparency enable the use of Organic Photovoltaics (OPV) in building façades and contribute to the realisation of Net Zero Energy Buildings (NZEB). However, the OPV scalability to terawatts of installed capacity is still non competitive with respect to its cost when compared to the conventional inorganic silicon-based technologies. One of the reasons is the lower performance achieved by the state-of-the-art OPV devices, whose active layer (the film where the light is absorbed and converted into free charges, electrons and holes, i.e. electricity) is typically composed of a blend made of an electron donor material (conjugated polymer) and a smaller compound as electron acceptor (Non-Fullerene Acceptor, NFA). A crucial factor determining the low performance of OPVs made with NFAs is related to their poor charge transport properties (e.g. low electron mobility and high recombination), which are intimately related to how these molecules are arranged in the solid film, i.e. their molecular organisation. Great progress was made in the field of organic electronics to obtain higher mobility by understanding the crystalline behaviour of organic molecules from their single crystals, and using these knowledge in the design of new compounds with the desired properties. At the beginning of this thesis project, little was known about the solid-state organisation of NFAs as very few single crystal structures were disclosed. For these reasons, we were first dedicated to the study of the intrinsic propensity of NFAs to crystallise by growing single crystals. At this fundamental level, we found that the NFA packing geometry is strongly affecting the isotropy of the charge transport, and potentially the electron mobility. On a following step, we developed a methodology to track the NFA packing geometry as we move from ideal systems (single crystals) to the most complex scenario of the solar cell active layer films, which include a donor and an acceptor (NFA) component. We discovered that NFAs generally tracks their packing motif from single crystals to blend films, and we quantified the benefit of using crystalline compounds with specific packing geometry in terms of electron mobility. Interestingly, we also found that these motifs are not necessary to obtain high performance in organic solar cells as the efficiency is mostly driven by charge recombination and domain purity, rather than electron mobility.
39

Graphen auf Siliziumcarbid: elektronische Eigenschaften und Ladungstransport / Graphene on silicon carbide: electronic properties and charge transport

Druga, Thomas 07 March 2014 (has links)
In dieser Arbeit werden die lokalen elektronischen Eigenschaften sowie der Ladungstransport bis auf atomare Längenskalen von epitaktischem Graphen auf der SiC(0001)-Oberfläche charakterisiert. Dazu wird neben den etablierten Rastersondenverfahren erstmals bei 6 K und unter UHV-Bedingungen die Methode der Rastertunnelpotentiometrie (STP) eingesetzt.  Hierzu wurden epitaktisch gewachsene Graphenproben auf der 6H-Si(0001)-Oberfläche unter UHV-Bedingungen durch resistives Heizen präpariert und anschließend elektrisch kontaktiert. Mit Hilfe des Rasterkraftmikroskopie und niederenergetischen Elektronenbeugung wird die Morphologie der Proben untersucht. Es können heterogene Proben mit einer Bedeckung von einlagigem und zweilagigem Graphen präpariert werden, die eine direkte vergleichende Untersuchung mit dem Rastertunnelmikroskop ermöglichen. Ergänzend wird zur Bestimmung der Lagenanzahl der gebildeten Graphenschichten die Differenz des Oberflächenpotentials von ein- und zweilagigem Graphen an Atmosphäre durch die Raster-Kelvin-Mikroskopie (KPFM) ermittelt.  Für Transportexperimente und zukünftige Anwendungen spielt der Kontaktwiderstand zwischen epitaktisch gewachsenem Graphen und den kontaktierenden Elektroden eine entscheidende Rolle. Es wird erstmals demonstriert, wie durch räumlich aufgelöste Messungen mit Hilfe der Raster-Kelvin-Mikroskopie am Gold-Graphen-Interface auf semi-isolierendem SiC(0001) eine obere Grenze des Kontaktwiderstandes von ρ_c=1×10^(-6) Ωcm² abgeschätzt werden kann.  Die Untersuchung der epitaktisch gewachsenen Graphenproben mit der Methode der Rastertunnelmikroskopie (STM) ermöglichen die eindeutige Identifizierung von ein- und zweilagigem Graphen und deren hexagonale atomare Struktur, die über mehrere 100 nm² keine Punktdefekte zeigen. Die unter der Graphenschicht liegende Zwischenschicht zeigt eine stark ungeordnete quasiperiodische Struktur mit zahlreichen Trimeren, die ebenso bei einer Bedeckung der Zwischenschicht mit ein- und zweilagigem Graphen abgebildet werden können. Einlagiges Graphen ist auf atomaren Längenskalen elektronisch stark inhomogen. Es können im Energiebereich von E_F±100 mV zahlreiche lokalisierte, räumlich variierende Zustände identifiziert werden, die selbst bei der Fermienergie auf Längenskalen von 5 nm² zu Variationen in der Zustandsdichte führen. Auf zweilagigem Graphen fallen Variationen in der lokalen Zustandsdichte geringer aus.  Um den für den elektronischen Transport relevanten Energiebereich bei E_F zu spektroskopieren, wird die Thermospannung im Tunnelkontakt ausgenutzt, welche sich mit der STP-Methode bestimmen lässt. Diese liefert neue Einblicke in die elektronische Struktur der Graphenoberfläche bei E_F. Die räumliche Variation der Thermospannung bei abgeschätzten Temperaturdifferenzen von einigen 10 bis 100 K zwischen Spitze und Probe liegt bei einigen 10 bis 100 µV sowohl auf atomarer Skala als auch zwischen ein- und zweilagigem Graphen und ist sehr empfindlich auf die atomaren Eigenschaften der eingesetzten STM-Spitze. Die hohe laterale und energetische Auflösung des Verfahrens ermöglicht die Analyse von Streuprozessen wie der Intra- und Intervalley-Streuung und zeigt im Gegensatz zu bisherigen Annahmen, dass auch noch zweilagiges Graphen elektronisch von der Zwischenschicht beeinflusst wird.  Die starke elektronische Inhomogenität der Proben bei der Fermienergie spiegelt sich auch in den Transportexperimenten mit dem STP-Verfahren wider. Es zeigen sich signifikante Spannungsabfälle auf ein- und zweilagigen Graphenflächen und an lokalisierten Defekten wie Übergängen zwischen einlagigen Graphenflächen und Übergängen zwischen ein- und zweilagigen Graphenflächen. Der Potentialverlauf kann gut durch ein klassisches ohmsches Transportmodell mit spezifischen Widerständen beschrieben werden. Die quantitative Analyse liefert spezifische Widerstände der einzelnen Defekte, die in der Größenordnung bisheriger Transportuntersuchungen liegen. Dabei zeigt sich, dass ein- und zweilagiges epitaktisches Graphen nahezu identische Mobilitäten von ~1000 cm²/Vs bzw. mittlere freie Weglängen von ~40 nm bei 6 K aufweisen. Diese Werte liegen weit unter den theoretisch erwarteten einer defektfreien Graphenoberfläche. Im Zuge der Transportmessungen wird ebenso der Einfluss der Thermospannung im Tunnelkontakt untersucht. Für Ladungstransportmessungen stellt sie einen zunächst unerwünschten Nebeneffekt dar, da die Variationen in der Thermospannung in derselben Größenordnung wie die Variationen im lokalen elektrochemischen Potential im Fall der durchgeführten Transportexperimente sind. Dies kann zu Fehlinterpretationen bei der Bestimmung von Spannungsabfällen führen. Jedoch wird im Rahmen der experimentellen Auflösung gezeigt, dass sich die Thermospannung rein additiv verhält und für Messungen des lokalen elektrochemischen Potentials mit entgegensetzten Stromrichtungen eliminieren lässt.  Des Weiteren wird der Verlauf des elektrochemischen Potentials in der unmittelbaren Umgebung von Übergängen zwischen ein- und zweilagigem sowie einlagigem Graphen untersucht. Die Spannungsabfälle sind auf einen Bereich kleiner λ_F/2 lokalisiert. Im Bezug auf den topographischen Verlauf zeigt sich für den Spannungsabfall am Übergang zwischen ein- und zweilagigem Graphen ein lateraler Versatz hin zum zweilagigen Graphen. Als Ursache wird ein kombinierter Streumechanismus aus einer lokalen Änderung der Dotierung und Fehlanpassung der Wellenfunktionen am Übergang zwischen ein- und zweilagigem Graphen vorgeschlagen.
40

The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyldiketopyrrolopyrrole- thieno[3,2-b]thiophene copolymers

Di Pietro, Riccardo, Erdmann, Tim, Wang, Naixiang, Liu, Xuhai, Gräfe, David, Lenz, Johannes, Brandt, Josef, Kasemann, Daniel, Leo, Karl, Al-Hussein, Mahmoud, Gerasimov, Kirill L., Doblas, David, Ivanov, Dimitri A., Voit, Brigitte, Neher, Dieter, Kiriy, Anton 10 January 2020 (has links)
We performed an in-depth study of high molecular weight poly[3,6-(dithiophene-2-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene] P(DPP2OD-TT) synthesized through the Stille coupling polycondensation in order to understand the correlation between molecular weight, processing conditions and charge transport. We observed a rapid increase in its aggregation in solution with increasing molecular weight which strongly limits the solubility and processability for weight average molecular weights beyond 200 kg mol⁻¹. This results in severe limitation in the charge transport properties of the polymer. We further observe the presence of bulk electronic defects in all different polymer batches that severely limit the current flow and manifest themselves in organic field effect transistors as apparent charge density dependence of the mobility. These defects are passivated by exposure to an ambient atmosphere, as confirmed by an increase in current and mobility that is no more charge density dependent. This is further confirmed by the result of chemical doping using 2,2-(perfluoronaphthalene-2,6-diylidene)dimalononitrile, F₆TCNNQ, which leads to the filling of the trap states and a higher charge density independent mobility of up to 1 cm2 V⁻¹ s⁻¹.

Page generated in 0.0878 seconds