• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 19
  • 8
  • Tagged with
  • 48
  • 26
  • 23
  • 23
  • 19
  • 18
  • 14
  • 14
  • 14
  • 13
  • 12
  • 10
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Einfluss von Laserlicht auf den Leitwert von metallenen Quantenpunktkontakten

Guhr, Daniel January 2008 (has links)
Zugl.: Konstanz, Univ., Diss., 2008
12

Transport Properties of Eu doped La2-xSrxCuO4

Ahmed, Emad Makboul Abdelhady. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
13

Ladungstransport durch DNA

Kleine, Hermann. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bielefeld.
14

Andreev-Streuung, Josephson-Bloch-Oszillationen und Zener-Tunneln in Heterokontakten aus Normal- und Supraleitern / Andreev scattering, Josephson-Bloch oscillations, and Zener tunneling in heterojunctions of normal conductors and superconductors

Jacobs, Arne January 2003 (has links) (PDF)
Die vorliegende Arbeit beleuchtet verschiedene Aspekte des Ladungstransports in Heterokontakten aus Normal- (N) und Supraleitern (S) im Rahmen des Bogoliubov-de Gennes-Formalismus. Dabei ist der bestimmende Prozeß die Andreev-Streuung: die Streuung von Elektronen in Löcher, bzw. umgekehrt, an räumlichen Variationen des supraleitenden Paarpotentials unter Erzeugung, bzw. Vernichtung, eines Cooperpaares und damit der Induktion eines Suprastroms. Befindet sich ein Supraleiter zwischen zwei normalleitenden Bereichen, so wandelt sich der an der einen NS-Phasengrenze durch Andreev-Streuung induzierte Suprastrom an der anderen NS-Phasengrenze wieder in einen durch Quasiteilchen getragenen Strom um. Diese Umwandlung erfolgt durch den Einfall eines Quasiteilchens, dessen Charakter dem des auf der gegenüberliegenden Seite des Supraleiters einfallenden Quasiteilchens entgegengerichtet ist, wie anhand von Wellenpaket-Rechnungen explizit gezeigt wird. Ersetzt man den Supraleiter durch einen mesoskopischen SNS-Kontakt, ist die Vielteilchen-Konfiguration in der mittleren N-Schicht phasenkohärent und daher verschieden von den unkorrelierten Quasiteilchen-Anregungen, die die verschobene Fermi-Kugel in den normalleitenden Zuleitungen bilden. Die Josephson-Ströme, die durch die Quasiteilchen in der mittleren N-Schicht getragen werden, werden unter zwei verschiedenen Modellannahmen berechnet: Im einen Fall werden nur Streuzustände als Startzustände betrachtet, im anderen, bei gleichzeitiger Berücksichtigung eines normalstreuenden Potentials, nur gebundene Zustände. Der SNS-Kontakt wird durch eine supraleitend/halbleitende Heterostruktur modelliert, deren Parameter-Werte sich an den Experimenten der Gruppe von Herbert Kroemer in Santa Barbara orientieren. Wenn die supraleitenden Bereiche ohne normalleitende Zuleitungen direkt mit einem Reservoir von Cooperpaaren verbunden sind, fallen nur Quasiteilchen in Streuzuständen aus den supraleitenden Bänken auf die NS-Phasengrenzen des Kontaktes ein. Mit den Normalleiter-Wellenfunktionen, die sich bei Anlegen einer Spannung V aus diesen Startzuständen entwickeln, wird die Josephson-Wechselstromdichte in der Mitte der N-Schicht bei der Temperatur T = 2,2 K berechnet. Die Stromdichte weist spannungsabhängige Oszillationen in der Zeit auf, deren Periode das Inverse der Josephson-Frequenz ist. Alle Stromdichten zeigen bei kleinen Spannungen einen steilen Anstieg ihres Betrages, der durch Quasiteilchen zustandekommt, die durch das elektrische Feld aus dem Kondensat kommend in den Paarpotentialtopf hineingezogen werden und dort bei kleinen Spannungen eine große Zahl von Andreev-Streuungen erfahren, wobei sie bei jedem Elektron-Loch-Zyklus die Ladung 2e durch die N-Schicht transportieren. Im zweiten betrachteten Fall wird unter Berücksichtigung von Normalstreuung der Gesamtzustand des Systems zu jedem Zeitpunkt durch eine Superposition von gebundenen Zuständen ausgedrückt. Die Energie dieser gebundenen Zustände ist abhängig von der Phasendifferenz Phi zwischen den supraleitenden Schichten. Für Werte der Phasendifferenz von ganzzahligen Vielfachen von Pi sind Zustände entgegengerichteter Impulse paarweise entartet. Das normalstreuende Potential mischt diese Zustände, hebt ihre Entartung auf und führt zu Energielücken: Es bilden sich Energiebänder im Phi-Raum, die formal den Bloch-Bändern von Kristallen im Wellenzahlraum entsprechen. Wird eine äußere Spannung angelegt, so ändert sich die Phasendifferenz gemäß der Josephson-Gleichung mit der Zeit und die Quasiteilchen oszillieren in ihren jeweiligen Phi-Bloch-Bändern: Diese Josephson-Bloch-Oszillationen ergeben den "normalen" Josephson-Wechselstrom, der zwischen positiven und negativen Werten schwingt und im zeitlichen Mittel Null ist. Zusätzlich können die Quasiteilchen durch Zener-Tunneln --- wie der analoge Prozeß in der Halbleiterphysik genannt wird --- in höhere Bänder übergehen. Während sich die Richtung der Josephson-Stromdichte zu den Zeiten minimaler Energielücke umkehrt, hat die Zener-Tunnel-Stromdichte nach einem Tunnel-Prozeß das gleiche Vorzeichen, das die Josephson-Stromdichte vor dem Tunnel-Prozeß hatte. Wenn die angelegte Spannung hinreichend groß ist und genügend Quasiteilchen in das höhere Band tunneln, überkompensiert die Zener-Tunnel-Stromdichte in der Halbperiode nach dem Tunnel-Prozeß die Josephson-Stromdichte, und die Gesamtstromdichte schwingt wieder in dieselbe Richtung wie vor dem Zener-Tunneln. Somit hat sich gewissermaßen die Periode halbiert: Die Gesamtstromdichte schwingt mit der doppelten Josephson-Frequenz. Allen untersuchten Aspekten des Ladungstransports durch Heterokontakte aus Normal- und Supraleitern ist eines gemein: Der für ihr Verständnis fundamentale Prozeß ist die Andreev-Streuung. / The present work covers various aspects of charge transport in heterojunctions consisting of normal conductors (N) and superconductors (S) within the framework of the Bogoliubov-de Gennes-Formalism. The determining process is Andreev scattering: the scattering of electrons into holes, or vice versa, by spatial variations of the superconducting pair potential. This scattering creates or destroys Cooper pairs, thereby inducing a supercurrent. If there is a superconductor between two normal conducting regions, the supercurrent induced by Andreev scattering in one NS interface changes into a quasiparticle current in the other NS interface. This conversion results from the incidence of a quasiparticle having a character opposite to that of the quasiparticle impinging on the opposite side of the superconductor, as is shown explicitly on the basis of wave packet calculations. If the superconductor is replaced by a mesoscopic SNS junction, the many-body configuration in the central N layer is a phase-coherent one and thus different from the uncorrelated quasiparticle excitations forming the shifted Fermi sphere in the normal current leads. The Josephson currents, that are carried by the quasiparticles in the central N layer, are calculated using two different model assumptions: In one case, only scattering states are regarded as initial states, in the other case, while simultaneously taking into account a normal scattering potential, only bound states. The SNS junction is modelled by a superconducting/semiconducting heterostructure, the parameter values of which are geared to the experiments of the group of Herbert Kroemer in Santa Barbara. If the superconducting region is directly connected to a reservoir of Cooper pairs without normal current leads, only quasiparticles in scattering states are incident from the superconducting banks onto the NS interfaces of the junction. The alternating Josephson current is calculated in the center of the N layer at temperature T = 2.2 K, using the N layer wavefunctions that evolve from the initial states when a voltage V is switched on. The current density shows voltage-dependent current oscillations in time, their period is the inverse of the Josephson frequency. All current densities show a steep increase of their magnitude with small voltages, brought about by quasiparticles originating from the condensate and being pulled by the electric field into the pair potential well, where they suffer a great number of Andreev reflections at small voltages while carrying a charge of 2e through the N layer with every electron-hole-cycle. In the second case the overall state of the system, taking into account normal scattering, is expressed at every instant of time as a superposition of bound states. The energy of these bound states depends on the phase difference Phi between the superconducting layers. For phase differences of integer multiples of Pi, states with opposite direction of momentum are pairwise degenerate. The normal scattering potential mixes these states, removes their degenaracy and leads to energy gaps: energy bands form in Phi-space, formally corresponding to the Bloch bands of crystals in wavenumber space. If an external voltage is switched on, the phase difference changes in time according to the Josephson equation, and the quasiparticles oscillate in their respective Phi-Bloch bands: These Josephson-Bloch oscillations yield the "normal" alternating Josephson current which swings between positive and negative values and equals zero in its time average. Additionally, quasiparticles can make transitions into higher bands via Zener tunneling --- as the analogous process in semiconductor physics is called. While the direction of the Josephson current density changes at the times when the energy gap is minimal, the Zener-tunneling current density possesses the same sign after a tunneling process as the Josephson current density had before the tunneling process. When the applied voltage is so high that many quasiparticles tunnel into the next higher band, and the Zener-tunneling current density overcompensates the Josephson current density in the half-period after the tunneling process, the overall current density swings back again into the same direction as before the Zener tunneling. Thus the period has effectively bisected: The overall current density oscillates with twice the Josephson frequency. All analysed aspects of charge transport through heterojunctions of normal conductors and superconductors have one thing in common: the fundamental process for their understanding is Andreev scattering.
15

Elektrische und optische Transportmessungen an einkristallinen organischen Feldeffekt-Transistoren

Fischer, Matthias, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
16

Electronic excited states in quasi-one-dimensional organic solids with strong coupling of Frenkel and charge-transfer excitons

Schmidt, Karin. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Dresden.
17

Ultrafast carrier dynamics investigated by a novel pump and probe terahertz technique

Wald, Hagen. Unknown Date (has links) (PDF)
University, Diss., 2003--Jena.
18

Diffusive and ballistic transport channels in epitaxial graphene nanoribbons

Aprojanz, Johannes 27 August 2019 (has links)
Graphene nanoribbons (GNRs) are considered as major building blocks of future carbon-based electronics, in which the termination of the edges essentially defines the electronic properties. Theoretical predictions, such as tunable band gaps in armchair orientated GNRs, and the existence of topologically protected metallic states located at zigzag edges, make them a potential candidate for transistor applications as well as a new class of fully coherent devices. In this context, the fabrication of high-quality GNRs with precise edge geometries is of great interest. Atomistic details and the interaction with its support crucially influence and determine the charge propagation within such graphene nanostructures. Hence, the understanding of transport mechanisms on the nanoscale is indispensable in order to integrate GNRs in future nanoelectronics. This thesis presents a detailed study of the sublimation-assisted growth of different types of self-assembled GNRs on SiC crystals using scanning probe, electron microscopy, and electron diffraction experiments. First, natural SiC steps will be shown to trigger the formation of µm-long epitaxial monolayer GNRs (ML-GNRs), which laterally expand on the flat SiC(0001) surface. These ribbons can be transformed into bilayer GNRs (BL-GNRs) by annealing in air. During this process, oxygen-intercalation takes place, forming an oxide layer below the BL-GNRs. Charge transfer into the oxide layer results in strong p-type doping. Based on local multi-probe experiments, ML-GNRs and BL-GNRs revealed 1D diffusive transport characteristics inherent in the comparably high charge carrier densities in both types of ribbon. Moreover, temperature activated interlayer hopping was identified as an effective transport mechanism in BL-GNRs. Graphene nanoribbons grown on pre-processed SiC sidewalls exhibited superior crystalline and electronic quality on wafer-scales. Sidewalls aligned parallel to the [11-20] SiC direction are composed of a periodic array of mini-terraces hosting several approximately (3+-1) nm wide armchair terminated GNRs (ac-GNRs) at their step edges. By using a combined nanoprobe and conductive atomic force microscopy study, ac-GNRs revealed semi-conducting transport characteristics with band gaps of ~300 meV. Such debunching effects can be suppressed in sidewalls along the [1-100] SiC direction. Here, the graphene completely overgrows the sidewall resulting in ~40 nm wide freestanding zigzag GNRs (zz-GNRs). A robust ballistic edge channel was found to be the hallmark of zz-GNRs, which persists on µm-scales at room temperature suggesting the existence of a perfectly conducting channel. However, the roughness of the SiC and the mesa sidewalls limit the charge propagation in this edge mode due to strong short-range interactions. Moreover, ballistic transport was independently proven by utilizing non-invasive and invasive voltage probes. Tuning of the invasiveness was achieved using cleaning procedures of the tips, which lead to a subsequent decrease of contact resistance due to the removal of oxide from the tip surface. The measured resistance of the ballistic conductor was shown to be directly dependent on the invasiveness of the tips, pointing out the importance of the interplay between the probes and the GNR. Finally, spatially-resolved nanoprobe experiments with ultra-small probe spacings revealed several quantized conduction plateaus across zz-GNRs. These plateaus were attributed to edge and bulk transport channels, respectively. Based on tight-binding calculations, the occurrence of spatially-segregated ballistic channels was explained by transversal electric fields originating from asymmetric edge terminations on both sides of the GNR. These findings highlight that edge morphology is an essential parameter in order to understand electronic transport in GNRs. / Nanometerbreite Streifen aus Graphen, sogenannte Graphen-Nanoribbons (GNRs), gelten als wichtiges Bauelement in zukünftigen, kohlenstoffbasierten Elektroniken. Dabei sind die elektronischen Eigenschaften der GNRs wesentlich durch die Geometrie ihrer Kanten bestimmt. Basierend auf theoretischen Modellen, werden skalierbare Bandlücken in armchair-GNRs, sowie lokalisierte, metallische Kantenzustände in zigzag-GNRs vorhergesagt. Diese Eigenschaften könnten für Transistoranwendugen oder sogar für die Realisierung von Bauelementen, die auf kohärentem Ladungstransport basieren, genutzt werden. Dementsprechend ist die Herstellung hochwertiger GNRs mit präzisen Kantengeometrien sowie das Verständnis der zugrundeliegenden Transportmechanismen von großem Interesse. Die vorliegende Arbeit umfasst eine detaillierte Charakterisierung der strukturellen Eigenschaften verschiedener GNR-Typen, die mittels Sublimationsepitaxie auf SiC Kristallen hergestellt wurden. Es wird gezeigt, dass sich μm-lange Monolagen-GNRs (ML-GNRs) an natürlichen SiC Stufenkanten ausbilden, die durch Tempern an Luft zu Bilagen-GNRs (BL-GNRs) transformiert werden können. Während des Temperns findet die Interkalation von Sauerstoff statt, sodass sich unterhalb des BL-GNRs eine Oxidschicht bildet. Der Ladungstransfer in diese Oxidschicht führt zu einer starken p-Dotierung. Lokale Transportmessungen mittels eines 4-Spitzen STM/SEM zeigen, dass sowohl ML-GNRs als auch BL-GNRs 1D diffuse Leiter sind, deren Transporteigenschaften durch die hohen Ladungsträgerdichten dominiert werden. Darüber hinaus wird gezeigt, dass das thermisch aktivierte Tunneln zwischen Graphenlagen ein effektiver Transportmechanismus in BL-GNRs ist. Graphen-Nanoribbons, die durch präferenzielles Wachstum auf SiC-Seitenwänden hergestellt wurden, zeichnen sich durch herausragende strukturelle sowie elektronische Eigenschaften aus. Seitenwände parallel zur [11-20] Richtung wiesen hierbei eine periodische Struktur von Mini-Terrassen auf, an deren Stufen sich mehrere (3 ± 1) nm breite armchair-GNRs (ac-GNRs) ausbilden. Durch die Kombination von 4-Spitzen STM/SEM und Rasterkraftmikroskopie mit leitfähigen Spitzen wurde festgestellt, dass ac-GNRs halbleitende Eigenschaften aufweisen. Die Größe der ermittelten Bandlücken beträgt ∼ 300 meV. Das Zerfallen in Mini-Terrassen kann bei Seitenwänden entlang der [1-100] SiC Richtung unterdrückt werden. Hierbei wird die Seitenwand vollständig vom Graphen überwachsen, sodass sich ∼ 40 nm breite zigzag-GNRs (zz-GNRs) ausbilden. Diese zeichnen sich durch einen robusten, ballistischen (Kanten-) Transportkanal aus, der bei Raumtemperatur auf μm-Skalen nachweißbar ist. Lediglich Rauigkeiten des Substrats sowie der Seitenwände, die als starke Streuzentren dienen, limitieren die Ausbreitung der Ladungsträger in diesem Kantenzustand. Der ballistische Transport von Ladungsträgern in zz-GNRs wurde unabhängig, mit Hilfe von nicht-invasiven und invasiven Spannungskontakten (STM-Spitzen) nachgewiesen. Die Invasivität der Kontakte wurde durch spezielle Reinigungsverfahren der Spitzen verändert, die zu geringeren Kontaktwiderständen führten. Hierbei wird gezeigt, dass der gemessene Widerstand des ballistischen Leiters direkt von der Invasivität der Spitzen abhängt. Dies deutet darauf hin, dass die Interaktion zwischen Messspitze und GNR bezüglich der Transporteigenschaften von großer Bedeutung ist. Abschließend werden mittels ortsaufgelöster Transportmessungen mit ultrakleinen Spitzenabständen mehrere, quantisierte Leitungskanäle detektiert, die sich räumlich über die Breite der zz-GNRs verteilen. Diese Kanäle können jeweils Kanten- und Volumen-Zuständen zugeordnet werden. Gestützt durch tight-binding-Berechnungen werden die quantisierten Transportkanäle durch transversale elektrische Felder erklärt, die durch asymmetrische Bindungsverhältnisse der Kanten erzeugt werden. Diese Ergebnisse unterstreichen, dass die Kantenmorphologie ein wesentlicher Parameter ist, um den elektronischen Transport in GNRs zu verstehen.
19

Transient optical and electrical effects in polymeric semiconductors

Bange, Sebastian January 2009 (has links)
Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing ("printed electronics"). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct comparisons with numerical simulations based on the known properties of charge injection, transport and recombination. The method of charge extraction under linear increasing voltages (CELIV) is investigated in some detail, correcting for errors in the published approach and highlighting the role of non-idealized conditions typically present in experiments. An improved method is suggested to determine the field dependence of charge mobility in a more accurate way. Finally, it is shown that the neglect of charge recombination has led to a misunderstanding of experimental results in terms of a time-dependent mobility relaxation. / Klassische Halbleiterphysik beschäftigt sich bereits seit mehreren Jahrzehnten erfolgreich mit der Weiterentwicklung elektronischer Bauteile wie Dioden, Leuchtdioden, Solarzellen und Transistoren auf der Basis von hochreinen anorganischen Kristallstrukturen. Im Gegensatz hierzu ist das Forschungsgebiet der organischen, insbesondere der polymeren Halbleiter noch recht jung: Die erste Leuchtdiode auf der Basis von "leitfähigem Plastik" wurde erst 1990 demonstriert. Polymere Halbleiter sind hierbei von besonderem Interesse für hochvolumige Anwendungen im Beleuchtungsbereich, da sie sich kostengünstig herstellen und verarbeiten lassen ("gedruckte Elektronik"). Die vereinfachte Herstellung bedingt dabei eine vergleichsweise geringe Komplexität der Bauteilstruktur und verringert die Optimierungsmöglichkeiten. Die vorliegende Arbeit leistet einen Beitrag zum Verständnis der Vorgänge an Grenzflächen und im Volumen von polymeren Leuchtdioden und ermöglicht damit ein besseres Verständnis der Bauteilfunktion. Im Fokus steht hierbei mit einem spiro-verknüpften Polyfluorenderivat ein kommerziell relevanter Polymertyp, der amorphe und hochgradig temperaturstabile Halbleiterschichten bildet. Ausgehend von einer Charakterisierung der Ladungstransporteigenschaften wird im Zusammenspiel mit numerischen Simulationen der Bauteilemission gezeigt, welche Rolle die polymeren und metallenen Kontaktelektroden für die Bauteilfunktion und -effizienz spielen. Des Weiteren wird ein weiß-emittierendes Polymer untersucht, bei dem die Mischung von blauen, grünen und roten Farbstoffen die Emissionsfarbe bestimmt. Hierbei wird das komplexe Wechselspiel aus Energieübertrag zwischen den Farbstoffen und direktem Ladungseinfang aufgeklärt. Es wird ein quantitatives Modell entwickelt, das die beobachtete Verschiebung der Emissionsfarbe unter wechselnden elektrischen Betriebsparametern erklärt und zusätzlich die Vorhersage von Temperatur- und elektrischen Konditionierungseffekten ermöglicht. Ausgehend von leicht messbaren Parametern wie Stromstärken und Emissionsspektren ermöglicht es Rückschlüsse auf mikroskopische Vorgänge wie die Diffusion von Ladungen hin zu Farbstoffen. Es wird gezeigt, dass im Gegensatz zu bisherigen Erkenntnissen der Ladungseinfang durch Drift im elektrischen Feld gegenüber der Diffusion überwiegt. In einem eher methodisch orientierten Teil zeigt die Arbeit, wie die beim Abschalten von Leuchtdioden beobachtbare Emission dazu verwendet werden kann, Erkenntnisse zu Ladungsdichten während der Betriebsphase zu gewinnen. Es wird abschließend nachgewiesen, dass eine gängige Methode zur Bestimmung von Ladungsbeweglichkeiten unter typischen Messbedingungen fehlerbehaftet ist. Ergebnisse, die bisher als eine zeitliche Relaxation der Beweglichkeit in ungeordneten Halbleitern interpretiert wurden, können damit auf die Rekombination von Ladungen während der Messung zurückgeführt werden. Es wird außerdem gezeigt, dass eine Modifikation der bei der Auswertung verwendeten Analytik die genauere Vermessung der Feldstärkeabhängigkeit der Beweglichkeit ermöglicht.
20

Functionalization of PS-b-P4VP Nanotemplates / towards optoelectronic applications

Krenek, Radim 19 December 2007 (has links) (PDF)
Self-organization of block copolymers becomes attractive for several branches of the current science and technology, which requires a cheap way of fabrication of well-ordered arrays of various nanoobjects. High ratio between the surface (or the interface) and the volume of the nanoobjects enables development of very efficient devices. The work within this thesis profits from the chemical dissimilarity between blocks of polystyrene-block-poly(4‑vinylpyridine) copolymers, where polystyrene forms “a body” of nanostructures and poly(4‑vinylpyridine) is “a link” for assemblies with low-molar-mass additives. Procedures and phenomena are demonstrated (observed) on few sorts of PS‑b‑P4VP copolymers with respect to their molecular weight and ratio of blocks. Although there are many kinds of nanostructures based on block copolymers, only nanotemplates are involved in the study. Their properties, like an influence of substrate roughness on microphase separation, stability of porous nanotemplates in ionized solutions, or a role of additives in their supramolecular assembly, respectively, are investigated. All of them appears to be important in development of various devices based on the nanotemplates. With respect to optoelectronic applications, electrical current transport and fluorescence are two basic phenomena studied on functionalized nanotemplates, developed in the thesis. DC transport is studied on nanostructures developed via sputtering of chromium into porous nanotemplates. Sputtering process is optimized in dependence of chromium deposition rate, composition and pressure of ambient gas. It is shown that a reactive nature of PS-b-P4VP nanotemplates enables development of resistant organometallic nanotemplates. On the other hand, suppression of the polymer reactivity is achieved by oxidation of a metal during sputtering in a reactive gas, which enables e. g. development of highly ordered TiO2 nanodots. Current-voltage characteristics are measured on “sandwich” devices (like LEDs) with various electrodes and composition. Several recent theoretical models fitting the characteristics are applied together with structural characterization techniques (like AFM or x-ray reflectivity) in order to elucidate relations among surface roughness, distribution of sputtered clusters, and carrier injection and transport. Fluorescence is studied on nanotemplates with organic low-molar-mass dyes, developed either via direct blending with the copolymer or via soaking of porous nanotemplates in dye solutions. Several relations between structure and fluorescence are observed. For instance, excimer emission in pyrene assemblies is supressed after ordering of the nanotemplate. Solvent induced orientation of fluorescein molecules in the nanotemplate results in fluorescence enhancement. Dimerization of Rhodamine 6G is dependent on the way of its impregnation in the nanotemplates (solvent, concentration, speed).

Page generated in 0.0653 seconds