• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 17
  • 10
  • Tagged with
  • 106
  • 102
  • 96
  • 88
  • 75
  • 65
  • 63
  • 48
  • 48
  • 48
  • 21
  • 21
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nucleation and growth of unsubstituted metal phthalocyanine films from solution on planar substrates

Ghani, Fatemeh January 2012 (has links)
Organic solar cells (OSC) are interesting as low cost alternative to conventional solar cells. Unsubstituted Metal-phthalocyanines (Pc) are excellent electron donating molecules for heterojunction OSC. Usually organic solar cells with Pcs are produced by vapor deposition, although solution based deposition (like spin casting) is cheaper and offers more possibilities to control the structure of the film. With solution based deposition several parameters (like temperature, solvent and etc.) affect the self-organized structure formation via nucleation and growth. The reason why vapor deposition is typically used is the poor solubility of the metal-phthalocyanines in most common solvents. Furthermore the process of nucleation and growth of Pc aggregates from solution is not well understood. For preparation of Pc films from solution, it is necessary to find the appropriate solvents, assess the solution deposition techniques, such as dip coating, and spin casting. It is necessary to understand the nucleation and growth process for aggregation/precipitation and to use this knowledge to produce nanostructures appropriate for OSC. This is important because the nanostructure of the films determines their performance. In this thesis, optical absorption and the stability of 8 different unsubstituted metal Pc’s were studied quantitatively in 28 different solvents. Among the several solution based deposited thin films produced based on this study, copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is chosen as a model system for an in-depth study. CuPc has sufficient solubility and stability in TFA and upon solution processing forms appropriate structures for OSCs. CuPc molecules aggregate into layers of nanoribbons with a thickness of ~ 1 nm and an adjustable width and length. The morphology and the number of deposited layers in the thin films are controlled by different parameters, like temperature and solution concentration. Material properties of CuPc deposited from TFA are studied in detail via x-ray diffraction, UV-Vis and FT-IR spectroscopy. Atomic force microscopy was used to study the morphology of the dried film. The mechanism of the formation of CuPc nanoribbons from spin casted CuPc/TFA solution in ambient temperature is investigated and explained. The parameters (e.g. solution concentration profile) governing nucleation and growth are calculated based on the spin casting theory of a binary mixture of a nonvolatile solute and evaporative solvent. Based on this and intermolecular interactions between CuPc and substrate a nucleation and growth model is developed explaining the aggregation of CuPc in a supersaturated TFA solution. Finally, a solution processed thin film of CuPc is applied as a donor layer in a functioning bilayer heterojunction OSC and the influence of the structure on OSC performance is studied. / In den vergangenen Jahren wurden kosteneffiziente nasschemische Beschichtungsverfahren für die Herstellung organischer Dünnfilme für verschiedene opto-elektronische Anwendungen entdeckt und weiterentwickelt. Unter anderem wurden Phthalocyanin-Moleküle in photoaktiven Schichten für die Herstellung von Solarzellen intensiv erforscht. Aufgrund der kleinen bzw. unbekannten Löslichkeit wurden Phthalocyanin-Schichten durch Aufdampfverfahren im Vakuum hergestellt. Des Weiteren wurde die Löslichkeit durch chemische Synthese erhöht, was aber die Eigenschaften von Pc beeinträchtigte. In dieser Arbeit wurde die Löslichkeit, optische Absorption und Stabilität von 8 verschiedenen unsubstituierten Metall-Phthalocyaninen in 28 verschiedenen Lösungsmitteln quantitativ gemessen. Wegen ausreichender Löslichkeit, Stabilität und Anwendbarkeit in organischen Solarzellen wurde Kupferphthalocyanin (CuPc) in Trifluoressigsäure (TFA) für weitere Untersuchungen ausgewählt. Durch die Rotationsbeschichtung von CuPc aus TFA Lösung wurde ein dünner Film aus der verdampfenden Lösung auf dem Substrat platziert. Nach dem Verdampfen des Lösungsmittels, die Nanobändern aus CuPc bedecken das Substrat. Die Nanobänder haben eine Dicke von etwa ~ 1 nm (typische Dimension eines CuPc-Molekül) und variierender Breite und Länge, je nach Menge des Materials. Solche Nanobändern können durch Rotationsbeschichtung oder auch durch andere Nassbeschichtungsverfahren, wie Tauchbeschichtung, erzeugt werden. Ähnliche Fibrillen-Strukturen entstehen durch Nassbeschichtung von anderen Metall-Phthalocyaninen, wie Eisen- und Magnesium-Phthalocyanin, aus TFA-Lösung sowie auf anderen Substraten, wie Glas oder Indium Zinnoxid. Materialeigenschaften von aufgebrachten CuPc aus TFA Lösung und CuPc in der Lösung wurden ausführlich mit Röntgenbeugung, Spektroskopie- und Mikroskopie Methoden untersucht. Es wird gezeigt, dass die Nanobänder nicht in der Lösung, sondern durch Verdampfen des Lösungsmittels und der Übersättigung der Lösung entstehen. Die Rasterkraftmikroskopie wurde dazu verwendet, um die Morphologie des getrockneten Films bei unterschiedlicher Konzentration zu studieren. Der Mechanismus der Entstehung der Nanobändern wurde im Detail studiert. Gemäß der Keimbildung und Wachstumstheorie wurde die Entstehung der CuPc Nanobänder aus einer übersättigt Lösung diskutiert. Die Form der Nanobändern wurde unter Berücksichtigung der Wechselwirkung zwischen den Molekülen und dem Substrat diskutiert. Die nassverarbeitete CuPc-Dünnschicht wurde als Donorschicht in organischen Doppelschicht Solarzellen mit C60-Molekül, als Akzeptor eingesetzt. Die Effizienz der Energieumwandlung einer solchen Zelle wurde entsprechend den Schichtdicken der CuPc Schicht untersucht.
12

Photoinduzierte Absorptionsspektroskopie an organischen, photovoltaisch aktiven Donor-Akzeptor-Heteroübergängen

Schüppel, Rico 14 April 2008 (has links) (PDF)
In organischen Solarzellen resultiert die photovoltaische Aktivität aus dem das Sonnenlicht absorbierenden Donor-Akzeptor-Heteroübergang. Die Grenzfläche zwischen den beiden organischen Materialien dient der effizienten Ladungsträgertrennung. Die vorliegende Arbeit leistet einen Beitrag im Verständnis zum Wirkungsmechanismus und der zu optimierenden Parameter in diesen Solarzellen. In Bezug auf die Anpassung des Donor-Akzeptor-Heteroübergangs wird neben dem Mechanismus der Ladungsträgergeneration an der Grenzfläche die erzielbare Leerlaufspannung in den Solarzellen diskutiert. Ein wesentliches Kriterium zur Erhöhung der Leerlaufspannung ist die Anpassung der Energieniveaus am Heteroübergang. Eine effiziente Ladungsträgertrennung wird durch eine hinreichende Stufe im Ionisationspotenzial sowie in der Elektronenaffinität am Heteroübergang erreicht. Zur Maximierung der Leerlaufspannung muss diese Überschussenergie, d.h. die Energiedifferenz zwischen photogeneriertem Exziton und freiem Ladungsträgerpaar, auf das notwendige Minimum reduziert werden. Eine Reihe von Dicyanovinyl-Oligothiophenen (DCVnT, n=3-6) wurden als Donor im Heteroübergang zu Fulleren C60 verwendet. Das Ionisationspotenzial der DCVnT nimmt mit zunehmender Kettenlänge ab, während die Elektronenaffinität, die weitestgehend durch die Dicyanovinyl-Endgruppen bestimmt wird, von der Kettenlänge nahezu unabhängig ist. Mittels photoinduzierter Absorptionsspektroskopie und zeitaufgelöster Fluoreszenzmessung wurde der Energie- und Elektronentransfer zwischen DCVnT und C60 entlang der homologen Reihe der DCVnT untersucht. Eine wesentliche Feststellung ist die Korrelation zwischen Rekombination in den Triplettzustand und der Leerlaufspannung. So konnte unter anderem gezeigt werden, dass durch die Verwendung angepasster Heteroübergänge unter bestimmten energetischen Voraussetzungen die indirekte Triplettbesetzung einen bislang nicht beachteten Verlustmechanismus für organische Solarzellen darstellt. Für organische Solarzellen ist demnach ein Kompromiss zwischen möglichst hoher Leerlaufspannung und effizienter Ladungsträgerdissoziation unter Vermeidung dieser Triplettrekombination zu erzielen. Weiterhin wird ein Konzept zur Nutzung dieser indirekten Triplettrekombination diskutiert. Dieses basiert auf der Tatsache, dass die Lebensdauer der Exzitonen im Triplettzustand gegenüber denen im Singulettzustand um 3-6 Größenordnungen höher ist. Damit wird eine höhere Diffusionslänge erwartet, was in einer dickeren und damit stärker absorbierenden aktiven Schicht genutzt werden könnte.
13

Metal Nanowire Networks as Transparent Electrode for Small-Molecule Organic Solar Cells

Sachse, Christoph 13 February 2015 (has links) (PDF)
This work focuses on the development of metal nanowire networks for the use as transparent electrodes in small-molecule organic solar cells. Broad adoption of organic solar cells requires inexpensive roll-to-roll processing on flexible, lightweight substrates. Under these conditions, traditional metal oxide electrodes suffer from significant drawbacks such as brittleness and cost. In contrast, metal nanowire networks provide properties more suitable for high-throughput processing and thus, are investigated here as an alternative. They combine the high-conductivity of metals with the advantage of optical transparency found in aperture-structured networks. The process chain from nanowire deposition to cell integration is examined with silver and copper nanowire material. Two techniques are presented for deposition. While dip-coating is investigated in detail, including a discussion of the most important parameters, spray-coating is demonstrated as an alternative for large area applications. Since the nanowires are barely conductive after deposition, post-treatment steps are used to achieve a performance comparable to standard metal oxide films such as tin-doped indium oxide (ITO). The inherent roughness of nanowire electrodes is addressed by using a conductive polymer as a planarization layer. On top of optimized electrodes, small-molecule organic solar cells are deposited with a UHV thermal evaporation process. Completed cells are tested and performance is found to be comparable to the used standard transparent electrodes. Additionally, a new approach to achieve aligned nanowire network structures is demonstrated. The additional degree of order is used to illustrate optical effects of silver nanowire networks. Furthermore, these aligned networks exhibit anisotropic conductivity. This effect is discussed and simulations are performed to reproduce the observations. The freedom of network design is used to achieve superior conductivity compared to standard random structures. / Im Fokus dieser Arbeit steht die Entwicklung von Metall-Nanodraht-Netzwerken für die Anwendung in transparenten Elektroden für organische Solarzellen. Eine breite Verwendung von organischen Solarzellen setzt eine kostengünstige Rolle-zu-Rolle Fertigung auf flexiblen und leichten Substraten voraus. Unter diesen Bedingungen leiden traditionell verwendete Metalloxid-Elektroden unter erheblichen Nachteilen, wie Brüchigkeit und Preis. Im Gegensatz dazu zeigen Metall-Nanodraht-Netzwerke deutlich bessere Eigenschaften und werden deshalb hier als alternative Elektroden untersucht. Die Netzwerke kombinieren die hohe Leitfähigkeit von Metallen mit einer hohen Transmittivität in Folge der netzwerkbedingten Apertur. Die Prozesskette von der Nanodraht-Abscheidung bis zur Zellintegration wird für Silber- und Kupferdrähte untersucht. Zwei Techniken für die Abscheidung werden präsentiert. Ein Tauchverfahren wird detailliert untersucht und die zugehörigen Parameter werden diskutiert. Für große Flächen wird eine Sprühbeschichtung als Alternative aufgezeigt. Da die abgeschiedenen Netzwerke eine schlechte Leitfähigkeit besitzen, sind Nachprozessierungsschritte notwendig um gute Leitfähigkeiten im Bereich von üblichen Elektroden wie Indium-Zinn-Oxid (ITO) zu erreichen. Die Rauheit der Nanodraht-Elektrode wird mit Hilfe einer glättenden Polymerschicht behoben. Auf den optimierten Elektroden werden organische Solarzellen aus kleinen Molekülen in einem thermischen UHV-Prozess abgeschieden. Die Zellen werden getestet und zeigen Eigenschaften vergleichbar zu üblichen transparenten Elektroden. Zusätzlich wird ein neuer Ansatz zur Herstellung von ausgerichteten Netzwerkstrukturen demonstriert. Der zusätzliche Grad an Ordnung wird für die Untersuchung von optischen Effekten an Silberdraht-Netzwerken genutzt. Weiterhin zeigen diese ausgerichteten Netzwerke eine anisotrope Leitfähigkeit. Dieser Effekt wird diskutiert und Simulationen werden durchgeführt, um die Beobachtungen zu verifizieren. Die Freiheit in der Netzwerkstruktur wird für eine Verbesserung der Leitfähigkeit genutzt.
14

Molecular Doping Processes in Organic Semiconductors investigated by Photoelectron Spectroscopy

Tietze, Max Lutz 18 August 2014 (has links) (PDF)
Molecular doping is a key technique for realizing high efficient organic light-emitting diodes (OLEDs) and photovoltaics (OPV). Furthermore, its most recent application in organic field-effect transistors (OFETs) marks a milestone on the roadmap towards flexible organic CMOS technology. However, in contrast to silicon based devices, the understanding of the fundamental processes of molecular doping is still controversially discussed. This work aims at the detailed analysis of the molecular doping process by employing Photoelectron spectroscopy (PES) on various doped thin-films prepared by co-evaporation in vacuum. Here, the focus is on explanation of the experimental findings by a statistical description in order to contribute to the fundamental understanding of the doping mechanism. First, the Fermi level shifts in thin-films of the common hole transport materials MeO-TPD, ZnPc, and pentacene p-doped by the acceptors C60F36 and F6-TCNNQ are studied. The precise control of molar doping ratios as low as 1e−5 is demonstrated, allowing analysis of the doping properties in a much broader range as previously accessible. Characteristic kinks and slopes in the Fermi level vs. doping concentration diagrams are found. Furthermore, the doping efficiency is found to decrease with increasing doping concentrations to just a few percent at molar ratios above 0.1. By numerically solving the charge neutrality equation using a classical semiconductor physics approach, these findings are explained by trap-limitation, dopant saturation, and reserve regimes as known from inorganic semiconductor physics. Using the example of p-doped MeO-TPD thin-films, it is finally demonstrated that the density of deep gap states depends on the purity degree of the host material. Similar studies are conducted on thin-films of C60, ZnPc, and pentacene n-doped by the di-metal complex W2(hpp)4. The corresponding Fermi level plots possess also host material specific kinks and slopes, which however, can be explained by application of the statistical doping description and assuming just dopant saturation and trap-limitation. Furthermore, it is demonstrated that electron traps with defined density can intentionally be introduced in pentacene by co-evaporation of C60 and gradually filled-up by n-doping with W2(hpp)4. In contrast to p-dopants, the highly efficient n-dopant W2(hpp)4 is prone to degradation in air due to its low IP of just 2.4eV. Therefore, the degradation of pure films of W2(hpp)4 as well as of n-doped films applying various host materials is studied under air exposure by conductivity measurements and PES. An unexpected (partial) passivation of W2(hpp)4 molecules against oxidation is found, however, this effect is identified to depend on the energy levels of the used host material. This finding is explained by a down-shift of the W2(hpp)4 energy levels upon charge transfer to a host material with deeper lying energy levels and thus allows for new conclusions on the relative alignment of the energy levels of dopant and host molecules in doped films in general. The maximum open-circuit voltage Voc of BHJ solar cells is limited by the effective HOMO(donor)-LUMO(acceptor) gap of the photo-active absorber blend. Therefore, the relative energy levels within ZnPc:C60 blend layers are furthermore investigated by PES, identifying an increase of the HOMO(ZnPc)-LUMO(C60) gap by 0.25 eV when varying the blend stoichiometry from 6:1 to 1:6. The trend in this gap correlates with observed changes in Voc of respective BHJ solar cells as well as with measured charge transfer energies. As physical origins for the changed energy levels, a suppressed crystallization of the C60 phase due to presence of donor molecules as well as concentration-dependent growth modes of the ZnPc phase are discussed.
15

High-rate growth of hydrogenated amorphous and microcrystalline silicon for thin-film silicon solar cells using dynamic very-high frequency plasma-enhanced chemical vapor deposition

Zimmermann, Thomas 29 January 2014 (has links) (PDF)
Thin-film silicon tandem solar cells based on a hydrogenated amorphous silicon (a-Si:H) top-cell and a hydrogenated microcrystalline silicon (μc-Si:H) bottom-cell are a promising photovoltaic technology as they use a combination of absorber materials that is ideally suited for the solar spectrum. Additionally, the involved materials are abundant and non-toxic which is important for the manufacturing and application on a large scale. One of the most important factors for the application of photovoltaic technologies is the cost per watt. There are several ways to reduce this figure: increasing the efficiency of the solar cells, reducing the material consumption and increasing the throughput of the manufacturing equipment. The use of very-high frequencies has been proven to be beneficial for the material quality at high deposition rates thus enabling a high throughput and high solar cell efficiencies. In the present work a scalable very-high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique for state-of-the-art solar cells is developed. Linear plasma sources are applied which facilitate the use of very-high frequencies on large areas without compromising on the homogeneity of the deposition process. The linear plasma sources require a dynamic deposition process with the substrate passing by the electrodes in order to achieve a homogeneous deposition on large areas. State-of-the-art static radio-frequency (RF) PECVD processes are used as a reference in order to assess the potential of a dynamic VHF-PECVD technique for the growth of high-quality a-Si:H and μc-Si:H absorber layers at high rates. In chapter 4 the influence of the deposition process of the μc-Si:H i-layer on the solar cell performance is studied for static deposition processes. It is shown that the correlation between the i-layer growth rate, its crystallinity and the solar cell performance is similar for VHF- and RF-PECVD processes despite the different electrode configurations, excitation frequencies and process regimes. It is found that solar cells incorporating i-layers grown statically using VHF-PECVD processes obtain a state-of-the-art efficiency close to 8 % for growth rates up to 1.4 nm/s compared to 0.53 nm/s for RF-PECVD processes. The influence of dynamic deposition processes on the performance of μc-Si:H solar cells is studied. It is found that μc-Si:H solar cells incorporating dynamically grown i-layers obtain an efficiency of 7.3 % at a deposition rate of 0.95 nm/s. There is a small negative influence of the dynamic deposition process on the solar cell efficiency compared to static deposition processes which is related to the changing growth conditions the substrate encounters during a dynamic i-layer deposition process. The changes in gas composition during a dynamic i-layer deposition process using the linear plasma sources are studied systematically using a static RF-PECVD regime and applying a time-dependent gas composition. The results show that the changes in the gas composition affect the solar cell performance if they exceed a critical level. In chapter 5 dynamic VHF-PECVD processes for a-Si:H are developed in order to investigate the influence of the i-layer growth rate, process parameters and deposition technique on the solar performance and light-induced degradation. The results in this work indicate that a-Si:H solar cells incorporating i-layers grown dynamically by VHF-PECVD using linear plasma sources perform as good and better as solar cells with i-layers grown statically by RF-PECVD at the same deposition rate. State-of-the-art stabilized a-Si:H solar cell efficiencies of 7.6 % are obtained at a growth rate of 0.35 nm/s using dynamic VHF-PECVD processes. It is found that the stabilized efficiency of the a-Si:H solar cells strongly decreases with the i-layer deposition rate. A simplified model is presented that is used to obtain an estimate for the deposition rate dependent efficiency of an a-Si:H/μc-Si:H tandem solar cell based on the photovoltaic parameters of the single-junction solar cells. The aim is to investigate the individual influences of the a-Si:H and μc-Si:H absorber layer deposition rates on the performance of the tandem solar cell. The results show that a high deposition rate of the μc-Si:H absorber layer has a much higher potential for reducing the total deposition time of the absorber layers compared to high deposition rates for the a-Si:H absorber layer. Additionally, it is found that high deposition rates for a-Si:H have a strong negative impact on the tandem solar cell performance while the tandem solar cell efficiency remains almost constant for higher μc-Si:H deposition rates. It is concluded that the deposition rate of the μc-Si:H absorber layer is key to reduce the total deposition time without compromising on the tandem solar cell performance. The developed VHF-PECVD technique using linear plasma sources is capable of meeting this criterion while promoting a path to scale the processes to large substrate areas.
16

Investigation of Low Optical-Gap Donor and Acceptor Materials for Organic Solar Cells

Shivhare, Rishi Ramdas 29 January 2020 (has links)
Development of efficient and clean energy sources to meet the ever-increasing de- mand of humankind is one of the greatest challenges of the 21st century. There is a dire need to decarbonise the power sector, and the focus needs to shift to re- newable resources such as wind and solar energy. In this regard, organic solar cells are a promising and novel technology owing to its low carbon footprint, innovative applications, and possible integration into the current infrastructure. Due to its unique advantages, a considerable research effort has been put into its development in the last decades. As a result, the power conversion efficiency (PCE) of the organic photovoltaics has steadily risen from as low as 0.5% to around 17 % at the current stage. This improvement primarily originates from the better understanding of the underlying physical processes and as a result of extensive material development. In the most general case, organic solar cells consist of a binary blend of an electron donating and an electron accepting organic semiconductor forming the so-called ‘bulk-heterojunction’ (BHJ) morphology. Thermodynamics places an upper limit on the power conversion efficiency (PCE) of binary blend BHJ devices and for further enhancement in efficiency novel device concepts like the use of ternary blends and tandem device architectures is being investigated. In relation to these approaches, the development of low optical-gap (Eopt ≤ 1.5 eV) organic semiconductors has gained importance as these materials provide for the complementary absorption with respect to the other components and better harvesting of the solar spectrum. This work mainly deals with the investigation of low optical gap donor and acceptor materials for organic solar cells. We investigate the effect of the molecular structure on the device performance and the photophysical processes in the binary and ternary blend configuration. In the first part of the thesis, we study a family of low optical- gap diketopyrrolopyrrole (DPP) based polymers while varying the conjugated core and the branching position and length of the solubilizing alkyl side chains. The branching position of the side chains is found to have a significant influence on the polymers ability to crystallize, which in turn influences the mobility of free charge carriers. The branching position also affects the solubility of the polymer, which in turn influences the morphology of the bulk-heterojunction (BHJ) and ultimately the yield of photogenerated charge carriers. To investigate the electron transfer and charge separation dynamics in the blends consisting of DPP polymers and fullerene, we employed ultrafast pump-probe spec- troscopic techniques. In the spectroscopy data, we observe signatures suggesting an ultrafast electron transfer process and an efficient charge separation process due to the high mobility of the free charge carriers shortly after separation (∼10-100 ps). Lastly, we investigated indacenodithiophene (IDT) based non-fullerene acceptor (NFA) molecules. In particular, we studied the effect of fluorination on the device performance when these acceptors are blended with PTB7-Th and P3HT donor polymers. The kinetics of the photophysical processes in the binary and ternary blends are characterized using ultrafast spectroscopy and related to the morphology of the blend and the molecular structure of the acceptors. Overall, we investigated the structural variations in the DPP polymers and flu- orinated non-fullerene acceptor (NFA) molecules and suggest design rules for the synthesis of optimal DPP polymers and non-fullerene acceptors to achieve supe- rior device performance. Additionally, we also shed light on the phenomenological processes happening on an ultrafast time scale (0.2-1000 ps) in the binary and the ternary blends with the aim of developing a better understanding of the photophys- ical processes in these promising material systems.
17

Metal Nanowire Networks as Transparent Electrode for Small-Molecule Organic Solar Cells

Sachse, Christoph 24 October 2014 (has links)
This work focuses on the development of metal nanowire networks for the use as transparent electrodes in small-molecule organic solar cells. Broad adoption of organic solar cells requires inexpensive roll-to-roll processing on flexible, lightweight substrates. Under these conditions, traditional metal oxide electrodes suffer from significant drawbacks such as brittleness and cost. In contrast, metal nanowire networks provide properties more suitable for high-throughput processing and thus, are investigated here as an alternative. They combine the high-conductivity of metals with the advantage of optical transparency found in aperture-structured networks. The process chain from nanowire deposition to cell integration is examined with silver and copper nanowire material. Two techniques are presented for deposition. While dip-coating is investigated in detail, including a discussion of the most important parameters, spray-coating is demonstrated as an alternative for large area applications. Since the nanowires are barely conductive after deposition, post-treatment steps are used to achieve a performance comparable to standard metal oxide films such as tin-doped indium oxide (ITO). The inherent roughness of nanowire electrodes is addressed by using a conductive polymer as a planarization layer. On top of optimized electrodes, small-molecule organic solar cells are deposited with a UHV thermal evaporation process. Completed cells are tested and performance is found to be comparable to the used standard transparent electrodes. Additionally, a new approach to achieve aligned nanowire network structures is demonstrated. The additional degree of order is used to illustrate optical effects of silver nanowire networks. Furthermore, these aligned networks exhibit anisotropic conductivity. This effect is discussed and simulations are performed to reproduce the observations. The freedom of network design is used to achieve superior conductivity compared to standard random structures. / Im Fokus dieser Arbeit steht die Entwicklung von Metall-Nanodraht-Netzwerken für die Anwendung in transparenten Elektroden für organische Solarzellen. Eine breite Verwendung von organischen Solarzellen setzt eine kostengünstige Rolle-zu-Rolle Fertigung auf flexiblen und leichten Substraten voraus. Unter diesen Bedingungen leiden traditionell verwendete Metalloxid-Elektroden unter erheblichen Nachteilen, wie Brüchigkeit und Preis. Im Gegensatz dazu zeigen Metall-Nanodraht-Netzwerke deutlich bessere Eigenschaften und werden deshalb hier als alternative Elektroden untersucht. Die Netzwerke kombinieren die hohe Leitfähigkeit von Metallen mit einer hohen Transmittivität in Folge der netzwerkbedingten Apertur. Die Prozesskette von der Nanodraht-Abscheidung bis zur Zellintegration wird für Silber- und Kupferdrähte untersucht. Zwei Techniken für die Abscheidung werden präsentiert. Ein Tauchverfahren wird detailliert untersucht und die zugehörigen Parameter werden diskutiert. Für große Flächen wird eine Sprühbeschichtung als Alternative aufgezeigt. Da die abgeschiedenen Netzwerke eine schlechte Leitfähigkeit besitzen, sind Nachprozessierungsschritte notwendig um gute Leitfähigkeiten im Bereich von üblichen Elektroden wie Indium-Zinn-Oxid (ITO) zu erreichen. Die Rauheit der Nanodraht-Elektrode wird mit Hilfe einer glättenden Polymerschicht behoben. Auf den optimierten Elektroden werden organische Solarzellen aus kleinen Molekülen in einem thermischen UHV-Prozess abgeschieden. Die Zellen werden getestet und zeigen Eigenschaften vergleichbar zu üblichen transparenten Elektroden. Zusätzlich wird ein neuer Ansatz zur Herstellung von ausgerichteten Netzwerkstrukturen demonstriert. Der zusätzliche Grad an Ordnung wird für die Untersuchung von optischen Effekten an Silberdraht-Netzwerken genutzt. Weiterhin zeigen diese ausgerichteten Netzwerke eine anisotrope Leitfähigkeit. Dieser Effekt wird diskutiert und Simulationen werden durchgeführt, um die Beobachtungen zu verifizieren. Die Freiheit in der Netzwerkstruktur wird für eine Verbesserung der Leitfähigkeit genutzt.
18

Characterization of tandem organic solar cells

Timmreck, Ronny 08 October 2015 (has links)
The tandem solar cell concept is a promising approach to improve the efficiency of photovoltaic devices. However, characterization of tandem solar cell devices is challenging since correct efficiency determination demands special experimental infrastructure as well as suitable characterization procedures. Even though the appropriate IEC and ASTM measurement standards define all that very precisely, they cannot be applied without special care to organic photovoltaics (OPV) because they were originally developed for inorganic devices. As a consequence, nowadays almost all tandem organic solar cell publications are not using correct characterization procedures, often resulting in questionable efficiency values. The aim of this work is developing a measurement procedure for tandem organic solar cells assuring their correct characterization. Therefore, at first the existing standards and measurement procedures for tandem solar cells are reviewed and challenges when applying these standards to organic solar cells are identified. As main challenges the relatively low fill factors and distinct nonlinearities of organic solar cells are identified. As preliminary experiments, single junction organic solar cells are investigated to analyze the influence of measurement parameters like bias irradiance, bias voltage, and chopper frequency on the external quantum efficiency (EQE) of organic solar cells. This results in parameter sets assuring minimized artifacts for the subsequent EQE determination of the subcells of tandem organic solar cells. The main part of this thesis presents the detailed characterization of a tandem OPV example device. First, EQE is measured and validated by two independent institutes. The EQE results are used to calculate the illumination conditions to reach AM1.5g conditions for both subcells with a multi-source sun simulator. The resulting efficiency value under standard reporting conditions (SRC) is found to be 5% lower than the efficiency measured with a single-source sun simulator. A full spectrometric characterization shows that differing fill factors of the subcells are the reason for this behavior. To overcome the main reason for the complicated measurement procedure of tandem solar cells, the inaccessibility of the individual subcells, three different approaches for the jV-characteristics determination of the subcells are presented. The so-called Bias Voltage Approach is based on EQE-measurements under varying bias voltage and needs no additional electrical contacts. Therefore, it can be applied to existing devices. The Voltage Contact Approach as well as the Current Contact Approach require in changed stack designs. Therefore, they cannot be applied to existing devices but give more accurate results. Finally, a procedure for characterizing tandem organic solar cells is formulated. This procedures aims at giving practical advice how to characterize tandem organic solar cells to achieve results conforming to the measurement standards and being as accurate and reproducible as possible. Hence, this thesis attempts to establish standards for a correct measurement of tandem organic solar cells of which other emerging solar cell technologies can profit as well.
19

Bildung von Hohlräumen in lokalen Rückseitenkontakten bei Passivated Emitter and Rear Solarzellen

Dressler, Katharina 26 September 2016 (has links)
In dieser Arbeit wurden zunächst zwei Charakterisierungsmethoden zur zerstörungsfreien Detektion von Voids in lokalen Rückseitenkontakten bei PERC Solarzellen vorgestellt, die akustische Mikroskopie und die Computertomografie. Beide Messmethoden wurden anhand von Proben mit unterschiedlichen Al-Pasten getestet und mit beiden Messmethoden können Voids sehr gut erkannt werden. Zur Vermeidung von Voidbildung konnte der positive Einfluss der Siliziumbeimischung in die Al-Paste bestätigt werden. Desweiteren konnte anhand unterschiedlicher RTP Feuerprofile gezeigt werden, dass durch eine verlangsamte Aufheizphase die Bildung von Voids deutlich reduziert werden kann, während die Abkühlphase nur einen geringen Einfluss auf die Voidbildung zeigt. Mithilfe eigens hergestellter Al-Pasten, mit unterschiedlichen Al-Partikelgrößen, wurde gezeigt, dass Al-Pasten mit einer Mischung aus kleinen und großen Al-Partikeln ebenfalls einen positiven Einfluss auf die Ausbildung von Voids haben können.
20

Chromophore-Matrix Interaction in Organic Semiconductors

Streiter, Martin 04 August 2020 (has links)
Organische Halbleiter sind Moleküle und Polymere, welche durch die Konjugation ihres Elektronensystems Eigenschaften erhalten, die klassischen anorganischen Halbleitern ähnlich sind. Dadurch eignen sie sich zur Anwendung in Solarzellen, Leuchtdioden, Farbstoffen und Photokatalysatoren. Im Gegensatz zu anorganischen Halbleitern bilden organische Halbleiter in dünnen Filmen meist ungeordnete Strukturen. Diese räumliche und energetische Unordnung ist auf molekulare Eigenschaften zurückzuführen und erschwert das Verständnis der Wirkungsweise von Bauteilen, wie beispielsweise organischen Solarzellen. Ursache ist, dass sich die photophysikalischen Eigenschaften einzelner organischer Halbleitermoleküle deutlich von ungeordneten Filmen unterscheiden. Der für die Wechselwirkung mit Licht entscheidende Bestandteil eines solchen Moleküls bzw. Monomers wird als Chromophor (griechisch Farbträger) bezeichnet. Die Interaktion von Chromophoren mit der umgebenden Matrix aus gleichen oder anderen Molekülen ist von zentraler Bedeutung für das Verständnis organischer Halbleiter und damit der Verbesserung von Bauteilen aus diesen Materialien. In der vorliegenden Arbeit werden neue experimentelle und mathematische Verfahren zur Analyse und Interpretation der photophysikalischen Eigenschaften von Chromophoren in Filmen organischer Halbleiter entwickelt und auf verschiedene Materialsysteme angewandt. Die wesentlichen Erkenntnisse und Leistungen dieser Arbeit sind der erstmalige Nachweis der Zeitabhängigkeit der Stokes-Verschiebung (Differenz von Emission und Absorption eines Farbstoffs), die empirische Herleitung eines Chromophormodells zur Beschreibung von Exzitonendiffusion in Polymeren, die molekülbezogene Modellierung verzögerter Fluoreszenz sowie die ortsaufgelöste Emissions- und Absorptionsmessung eines Ladungstransferzustandes. Die experimentellen Ergebnisse, entwickelten Methoden und hergeleiteten Modelle sind im Forschungsgebiet der organischen Halbleiter für verschiedene Teildisziplinen (Einzelmolekülspektroskopie, Solarzellen, Leuchtdioden, Photokatalyse) bedeutsam. Die Arbeit beschreibt damit themenübergreifend den Zusammenhang zwischen photophysikalischen Eigenschaften organischer Halbleiter und ihrer Ursache in den molekularen und energetischen Gegebenheiten einzelner Chromophore.

Page generated in 0.0578 seconds