• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 2
  • 2
  • Tagged with
  • 24
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transferts de chaleur et de masse dans un bain liquide avec fusion de la paroi et effets de composition / Heat and mass transfer in a liquid pool with wall ablation and composition effects

Pham, Quynh Trang 09 April 2013 (has links)
Ce travail traite de la thermohydraulique d’un bain de melt couplée à la physicochimie pour ladescription du comportement de mélanges de matériaux (non-eutectiques).On décrit le transitoire d’établissement de température dans un liquide avec dégagement de puissancevolumique en présence de solidification sur une paroi refroidie. Le modèle développé à cet effet estvalidé par rapport aux résultats des essais LIVE réalisés à KIT. Dans les conditions de ces essais onmontre que la température d’interface suit la température liquidus (correspondant à la composition dubain liquide) pendant le transitoire d’établissement de la température dans le bain et des croûtessolides.Par ailleurs, on propose un modèle d’interaction entre un liquide non-eutectique (soumis à dissipationvolumique de puissance) et une paroi fusible dont la température de fusion est inférieure à latempérature liquidus du bain. Les prédictions du modèle sont comparées aux résultats des essaisARTEMIS 2D. On en déduit une nouvelle formulation de la température d’interface (inférieure àliquidus température) entre le liquide et la couche pâteuse en paroi. / This work deals with the thermal-hydraulics of a melt pool coupled with the physical chemistry for thepurpose of describing the behaviour of mixtures of materials (non-eutectic).Evolution of transient temperature in a liquid melt pool heated by volumetric power dissipation hasbeen described with solidification on the cooled wall. The model has been developed and is validatedfor the experimental results given by LIVE experiment, performed at Karlsruhe Institute ofTechnology (KIT) in Germany. Under the conditions of these tests, it is shown that the interfacetemperature follows the liquidus temperature (corresponding to the composition of the liquid bath)during the whole transient. Assumption of interface temperature as liquidus temperature allowsrecalculating the evolution of the maximum melt temperature as well as the local crust thickness.Furthermore, we propose a model for describing the interaction between a non-eutectic liquid meltpool (subjected to volumetric power dissipation) and an ablated wall whose melting point is below theliquidus temperature of the melt. The model predictions are compared with results of ARTEMIS 2Dtests. A new formulation of the interface temperature between the liquid melt and the solid wall(below liquidus temperature) has been proposed.
12

Modélisation de l'interaction entre le cœur fondu d'un réacteur à eau pressurisée et le radier en béton du bâtiment réacteur / Modelling of the Molten Core Concrete Interaction (MCCI)

Guillaumé, Mathieu 12 December 2008 (has links)
Les accidents graves de centrales nucléaires ont une probabilité d’occurrence très faible, mais compte tenu des risques encourus, il est nécessaire de savoir prédire l’évolution de l’accident. Dans le scénario le plus critique, le dégagement de chaleur induit par la désintégration des produits de fission entraînerait la fusion du cœur et la formation d’un magma (« corium ») qui tomberait sur le radier en béton du bâtiment réacteur, provoquant sa fusion. L’objectif des études est d’évaluer la vitesse de fusion du béton. Dans ce contexte, le travail effectué dans cette thèse se situe dans la continuité du modèle de ségrégation de phases développé par Seiler et Froment, et s’appuie sur les résultats expérimentaux des essais ARTEMIS. D’une part, nous avons développé un nouveau modèle de transferts à travers le milieu interfacial. Ce modèle fait intervenir trois mécanismes de transfert : la conduction, la convection et un dégagement de chaleur latente. D’autre part, nous avons revu la modélisation couplée du bain et du milieu interfacial, ce qui a conduit au développement de deux nouveaux modèles : « le modèle liquidus », pour lequel on suppose qu’il n’y a pas de résistance au transfert de soluté, et le « modèle à épaisseur de milieu interfacial constante », pour lequel on suppose qu’il n’y a pas de dissolution du milieu interfacial. Le modèle à épaisseur de milieu interfacial constante permet de prédire correctement les valeurs expérimentales de la vitesse de fusion du béton et de la température du bain, dans les essais 3 et 4 tandis que le modèle liquidus, appliqué aux essais 2 et 6, prédit correctement l’évolution de la vitesse de fusion et de la température du bain / Severe accidents of nuclear power plants are very unlikely to occur, yet it is necessary to be able to predict the evolution of the accident. In some situations, heat generation due to the disintegration of fission products could lead to the melting of the core. If the molten core falls on the floor of the building, it would provoke the melting of the concrete floor. The objective of the studies is to calculate the melting rate of the concrete floor. The work presented in this report is in the continuity of the segregation phase model of Seiler and Froment. It is based on the results of the ARTEMIS experiments. Firstly, we have developed a new model to simulate the transfers within the interfacial area. The new model explains how heat is transmitted to concrete: by conduction, convection and latent heat generation. Secondly, we have modified the coupled modelling of the pool and the interfacial area. We have developed two new models: the first one is the “liquidus model”, whose main hypothesis is that there is no resistance to solute transfer between the pool and the interfacial area. The second one is “the thermal resistance model”, whose main hypothesis is that there is no solute transfer and no dissolution of the interfacial area. The second model is able to predict the evolution of the pool temperature and the melting rate in the tests 3 and 4, with the condition that the obstruction time of the interfacial area is about 105 s. The model is not able to explain precisely the origin of this value. The liquidus model is able to predict correctly the evolution of the pool temperature and the melting rate in the tests 2 and 6
13

Investigations of Melt Spreading and Coolability in a LWR Severe accident

Konovalikhin, Maxim January 2001 (has links)
No description available.
14

CFD-Calculations to a Core Catcher Benchmark

Willschütz, Hans-Georg 31 March 2010 (has links) (PDF)
There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN.For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-e-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes.
15

Investigations of Melt Spreading and Coolability in a LWR Severe accident

Konovalikhin, Maxim January 2001 (has links)
No description available.
16

CFD-Calculations to a Core Catcher Benchmark

Willschütz, Hans-Georg January 1999 (has links)
There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN.For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-e-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes.
17

Echanges de masse et de chaleur entre deux phases liquides stratifiées dans un écoulement à bulles

Lapuerta, Céline 05 October 2006 (has links) (PDF)
Lors d'un hypothétique accident majeur dans un réacteur à eau sous pression, la dégradation du coeur peut produire un bain stratifié, traversé par un flux de bulles. Ce dernier influence grandement les transferts thermiques, dont l'intensité est déterminante dans le déroulement de l'accident. Dans ce contexte, ce travail porte sur une modélisation de type interface diffuse pour l'étude d'écoulements incompressibles, anisothermes, composés de trois constituants non miscibles, sans changement de phase. Dans les méthodes à interface diffuse, l'évolution du système est décrite à travers la minimisation d'une énergie libre. L'originalité de notre approche, inspirée du modèle de Cahn-Hilliard, réside dans la forme particulière de l'énergie que nous proposons, qui permet d'avoir un modèle algébriquement et dynamiquement consistant, au sens suivant : d'une part, l'énergie libre triphasique coïncide exactement avec celle du modèle de Cahn-Hilliard diphasique quand seulement deux des phases sont présentes ; d'autre part, si une phase est initialement absente alors elle n'apparaîtra pas au cours du temps, cette dernière propriété étant stable vis à vis des erreurs numériques. L'existence et l'unicité des solutions faibles et fortes sont démontrées en dimension 2 et 3 ainsi qu'un résultat de stabilité pour les états métastables.<br /><br />La modélisation d'un système ternaire en écoulement anisotherme est ensuite poursuivie par couplage des équations de Cahn-Hilliard avec celles du bilan d'énergie et de Navier-Stokes où les contraintes surfaciques sont prises en compte à travers des forces volumiques capillaires. L'ensemble est discrétisé en temps et en espace de façon à préserver les propriétés du problème continu (conservation du volume, estimation d'énergie). Différents résultats numériques sont présentés, depuis le cas de validation de l'étalement d'une lentille entre deux phases jusqu'à l'étude des transferts de masse et de chaleur à travers une interface liquide/liquide traversée par une bulle ou un train de bulles.
18

Možnosti vnějšího dochlazování tlakové nádoby při havárii s roztavením aktivní zóny / Possibilities of the external cooling of a pressure vessel in case of the accident with active zone melting

Hanuš, Jan January 2014 (has links)
The accident at the Fukushima Daiichi nuclear power plant has shown us that there may be situations where the applied technology will not be able to successfully cool the reactor core. These situations may occur when more elements such as supply of energy to power the pumps and diesel generators are destroyed for example by tsunami or earthquake, or other not expected natural disasters. The inability of the residual heat removal leads to the melting of core, relocation to the bottom of reactor pressure vessel (RPV) and failure of RPV. Result of this accident may be containment failure and leakage of fission products into the environment. One way to prevent this scenario may be a passive system called IVR (In-Vessel Retention) by using external cooling of RPV that retains melted core in. This system counts with flooding of RPV´s shaft by water. After natural circulation of water provides the heat transfers from the wall of RPV. The applicability of IVR for VVER 1000 reactors is still in the course of research. However it´s already clear that the submersion of RPV shaft by water will not sufficient. Other elements as suitable insulation and RPV coating which provides a more intensive heat transfer from the walls of RPV will be needed.
19

Transferts de chaleur et de masse dans un bain liquide avec fusion de la paroi et effets de composition

Pham, Quynh trang 09 April 2013 (has links) (PDF)
Ce travail traite de la thermohydraulique d'un bain de melt couplée à la physicochimie pour ladescription du comportement de mélanges de matériaux (non-eutectiques).On décrit le transitoire d'établissement de température dans un liquide avec dégagement de puissancevolumique en présence de solidification sur une paroi refroidie. Le modèle développé à cet effet estvalidé par rapport aux résultats des essais LIVE réalisés à KIT. Dans les conditions de ces essais onmontre que la température d'interface suit la température liquidus (correspondant à la composition dubain liquide) pendant le transitoire d'établissement de la température dans le bain et des croûtessolides.Par ailleurs, on propose un modèle d'interaction entre un liquide non-eutectique (soumis à dissipationvolumique de puissance) et une paroi fusible dont la température de fusion est inférieure à latempérature liquidus du bain. Les prédictions du modèle sont comparées aux résultats des essaisARTEMIS 2D. On en déduit une nouvelle formulation de la température d'interface (inférieure àliquidus température) entre le liquide et la couche pâteuse en paroi.
20

Instabilité et dispersion de jets de corium liquides : analyse des processus physiques et modélisation dans le logiciel MC3D / Corium liquid jets instability and dispersion : analysis of physical process and modelisation on the MC3D code

Castrillon Escobar, Sebastian 13 September 2016 (has links)
Lors d’un accident grave dans un réacteur nucléaire (REP ou REB en particulier), le combustible fondu (corium) peut se déverser dans le réfrigérant (eau). L’interaction entre les deux fluides est appelée Interaction Combustible-Réfrigérant. Sous certaines conditions, cette interaction peut conduire à une «explosion de vapeur» qui peut menacer le confinement du réacteur nucléaire. L’ICR est une interaction de caractère multiphasique complexe où divers phénomènes physiques interviennent de manières couplées. Elle débute par une phase de mélange entre les fluides (prémélange), se traduisant par la fragmentation du corium et sa dispersion dans le réfrigérant. Ce processus de fragmentation impacte les échanges thermiques (ébullition et mise en mouvement du fluide environnant (réfrigérant)) et les processus chimiques (oxydation du corium et génération d’hydrogène). Cette thèse apporte de nouveaux éléments concernant la compréhension physique et la modélisation du phénomène de fragmentation du corium, dont l’objectif principal est d’améliorer la modélisation dans le logiciel de thermohydraulique multiphasique MC3D, développé par l’IRSN. L’étude proposée se base sur l’hypothèse de la modélisation de la fragmentation comme un phénomène multi-échelle avec un découplage entre taux de fragmentation du jet et dimension des gouttes résultantes. Elle suppose un processus de fragmentation qui est le résultat d’une déstabilisation primaire (passage jet -> grosses gouttes) pilotée par les grandes échelles de l’écoulement et d’un processus de déstabilisation secondaire menant à une fragmentation finale dépendante des paramètres plus «locaux» de l’écoulement. Nous avons conjugué notre modélisation avec une méthode de type MUSIG récemment introduite dans le logiciel MC3D. Les gouttes de corium y sont représentées, via un découpage en classes, par plusieurs champs de masse et d’énergie avec des diamètres distincts. Malgré les avancées dans la modélisation de la fragmentation, la compréhension des mécanismes et la caractérisation de la fragmentation des gouttes liquides est encore très imparfaite, particulièrement dans le cas liquide/liquide. Le travail de thèse s’est alors orienté vers l’analyse de ce processus en utilisant le logiciel de simulation GERRIS. L’étude conduit à proposer une nouvelle carte de régimes de fragmentation en configuration liquide/liquide, une compréhension plus approfondie de la dynamique de fragmentation et une analyse sur l’interaction vortex-goutte pilotant la transition entre les régimes. / In the case of a severe accident in a nuclear power plant, the molten core may flow into water and interact with it. The consequences of this fuel-coolant interaction (FCI) for the follow-up of the accident may be numerous so the phenomenon needs to be described accurately, one of them called “steam explosion” can lead to the failure of the nuclear reactor containment. FCI is a complex multiphase interaction involving several physical phenomena. The premixing phase of the interaction consists in the fragmentation and dispersion of corium in the coolant pool. This phase is driven by the fragmentation process which modifies heat transfers (coolant boiling dynamics) and chemical reactions (corium oxidation and hydrogen generation). This thesis brings new elements about the corium jet and droplet breakup with the main goal of improve fragmentation models on the MC3D multiphase code, developed by the IRSN. Our study is based on a multi-scale fragmentation process where the jet fragmentation rate and final droplet dimensions are not coupled themselves. We suppose a fragmentation process resulting from a primary instability (mass transfer within jet and big droplets) depending on the large flow scales and a secondary instability depending on the small flow scales (leading to final droplet breakup). This model has been implemented in MC3D in combination with the MUSIG method recently added to MC3D. In this method, droplets are represented using several classes, each of them with their own droplet diameter, mass and energy fields. Despite new improvements on modeling corium fragmentation, there is still a lack on the comprehension and characterization on the liquid droplet fragmentation, particularly on liquid/liquid configurations. In this thesis, we study in detail droplet breakup using the computational fluid dynamics software GERRIS. As a result, we find a new droplet breakup classification in liquid/liquid configurations, we improve the droplet breakup dynamics comprehension and we analyze the droplet-vortex interaction to determine breakup regime transition.

Page generated in 0.0252 seconds