• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parent characterization of quality protein maize (Zea mays L.) and combining ability for tolerance to drought stress

Pfunde, Cleopatra Nyaradzo January 2012 (has links)
Quality protein maize (QPM) has enhanced levels of two essential amino acids, lysine and tryptophan compared to normal maize. This makes QPM an important cereal crop in communities where maize is a staple crop. The main abiotic factor to QPM production is drought stress. Little information is available on the effect of drought stress on QPM. Therefore, the objectives of this study were to: (i) conduct diversity analysis of QPM inbred lines using morpho-agronomic and simple sequence repeat markers, (ii) screen available QPM inbred lines and F1 progeny for tolerance to seedling drought stress, (iii) determine the combining ability and type of gene action of QPM inbred lines for tolerance to seedling drought stress, grain yield and endosperm modification. The study was conducted in South Africa, at the University of Fort Hare. Morphological characterisation of 21 inbred lines was done using quantitative and qualitative traits. A randomised complete block design with three replicates was used for characterizing the inbred lines in the field. Genstat statistical software, version 12 (Genstat ®, 2009) was used for analysis of variance (ANOVA) and descriptive statistics. Analysis of variance was performed on all quantitative data for morphological traits. Data for qualitative traits was tabulated in their nominal classes. Traits that contributed most to the variation were days to anthesis, days to silking, anthesis-silking interval, plant height, number of kernel rows, ear length and grain yield. Cluster analysis grouped the inbred lines into three main clusters. The first cluster was characterised by tall and average yielding lines, while the second cluster showed the least anthesis-silking interval, and had the highest yield. Cluster three consisted of lines that were early maturing, but were the least yielding. Genetic distances between maize inbred lines were quantified by using 27 simple sequence repeat markers. The genetic distances between genotypes was computed using Roger’s (1972) genetic distances. Cluster analysis was then carried out using the neighbour-joining tree method using Power Marker software version 3.25. A dendrogram generated from the genetic study of the inbred lines revealed three groups that concurred with expectations based upon pedigree data. These groups were not identical to the groups generated using morpho-agronomic characterisation. Twenty one QPM inbred lines were crossed using a North Carolina design II mating scheme. These were divided into seven sets, each with three inbred lines. The three inbred lines in one set were used as females and crossed with three inbred lines in another set consisting of males. Each inbred line was used as a female in one set, and as a male in a second set. Sixty three hybrids (7 sets x 9 hybrids) were formed and evaluated in October 2011, using a 6x8 alpha-lattice incomplete block design with three replicates under glasshouse and optimum field conditions. A randomised complete block design with three replicates was used for the 21 parental inbred lines. Traits recorded for the glasshouse study were, canopy temperature, chlorophyll content, leaf roll, stem diameter, plant height, leaf number, leaf area, fresh and dry root and shoot weights. Data for the various traits for each environment, 25 percent (stress treatment) and 75 percent (non-stress) of field capacity, were subjected to analysis of variance using the unbalanced treatment design in Genstat statistical package Edition 12. Where varietal differences were found, means were separated using Tukey’s test. Genetic analyses for grain yield and agronomic traits were performed using a fixed effects model in JMP 10 following Residual Maximum Likelihood procedure (REML). From the results, inbred lines that were not previously classified into heterotic groups and drought tolerance categories were classified based on their total dry weight performance and drought susceptibility index. Inbred lines L18, L9, L8, L6 and L3, in order of their drought tolerance index were the best performers under greenhouse conditions and could be recommended for breeding new varieties that are tolerant to seedling drought stress. Evaluation of maize seedlings tolerant to drought stress under glasshouse conditions revealed that cross combination L18 x L11 was drought tolerant, while cross L20 x L7 was susceptible. Total dry weight was used as the major criteria for classifying F1 maize seedlings as being resistant or susceptible. General combining ability effects accounted for 67.43 percent of the genetic variation for total dry weight, while specific combining ability effects contributed 37.57 percent. This indicated that additive gene effects were more important than non-additive gene action in controlling this trait. In the field study (non-drought), the experimental design was a 6x8 alpha lattice incomplete block design with three replicates. On an adjacent field a randomised complete block design with three replicates was used to evaluate the parental inbred lines. The following variables were recorded: plant height, ear height, ears per plant, endosperm modification, days to silking and days to anthesis, anthesis-silking interval, number of kernels per row, number of rows per ear and grain yield. General analyses for the incomplete lattice block design and randomised complete block design for hybrid and inbred data respectively were performed using JMP 10 statistical software. Means were separated using the Tukey's test. Genetic analyses of data for grain yield and agronomic traits were conducted using a fixed effects model using REML in JMP 10. The importance of both GCA (51 percent) and SCA (49 percent) was observed for grain yield. A preponderance of GCA existed for ear height, days to anthesis, anthesis-silking interval, ears per plant and number of kernels per row, indicating that predominantly, additive gene effects controlled hybrid performance under optimum field conditions. The highest heritability was observed for days to silking (48.27 percent) suggesting that yield could be improved through selection for this trait. Under field conditions, variation in time to maturity was observed. This implies that these inbred lines can be recommended for utilisation in different agro-ecologies. Early maturing lines such as L18 can be used to introduce earliness in local cultivars, while early maturing single crosses such as L18 x L2, L5 x L9, L3 x L4 and L2 x L21 could be recommended for maize growers in drought prone areas such as the former Ciskei. Single crosses L18xL11, L16xL18, L8xL21 and L9xL6 had good tolerance to seedling drought stress. On the other hand, single crosses L18xL11 and L11xL13 had high grain yield and good endosperm modification. All these single crosses could be recommended for commercial production after evaluation across locations in the Eastern Cape Province. Alternatively they can be crossed with other superior inbreds to generate three or four way hybrids, which could then be evaluated for potential use by farmers in the Eastern Cape.
2

Adoption of drought-tolerant maize varieties among smallholder farmers in Lepelle-Nkumpi Municipality, South Africa

Ramokgopa, Tshwarelo Calvin January 2021 (has links)
Thesis (M. Sc. (Agricultural Economics)) -- University of Limpopo, 2021 / Agriculture is not only the backbone, but also an important sector of the South African economy. It provides food and employment to a majority of people in the country, especially in the rural areas. Smallholder farmers play an important role in livelihood creation and the alleviation of poverty among the population of the Limpopo Province. However, despite their significant contribution, smallholder farmers’ production is still low. Climate change has bought increasing frequencies and severity of drought conditions and uncertainties in the length and quality-growing season. Drought threatens the production of maize as a staple food and without measures to counter climate change, food security will be a major problem in South Africa. This study therefore examined factors determining the adoption of drought tolerant maize among smallholder farmers in the Lepelle-Nkumpi Municipality. Primary data was collected using semi-structured questionnaires to achieve the objectives of the study. Multistage sampling was used for the study because larger clusters were subdivided into smaller and more targeted groupings for surveying. Descriptive Statistics and the Binary Probit Model were used to analyse the data. The results of the Probit Regression analysis indicated that farm size, hired labour and maize produced per hectare had positive significant influence on the probability of farmers adopting drought tolerant maize varieties. Farm size and maize produced per hectare were statistically significant at 1% and hired labour was statistically significant at 5%. Based on the sample of this study,74% of the households grew non-drought tolerant maize varieties, while 26% of the smallholder farmers grew drought tolerant maize varieties. The results indicate that 24,4% of the farmers were not affected by any constraints in terms of their adoption of drought tolerant maize varieties whilst 76,6% said they are affected by those constraints in Lepelle-Nkumpi Municipality. Based on the study’s findings, it is recommended that extension officers should make it a priority to provide smallholder farmers with timely and accurate information. Extension officers should effectively disseminate information about the adoption of drought tolerant maize through a combination of different pathways.
3

Drought analysis with reference to rain-fed maize for past and future climate conditions over the Luvuvhu River catchment in South Africa

Masupha, Elisa Teboho 02 1900 (has links)
Recurring drought conditions have always been an endemic feature of climate in South Africa, limiting maize development and production. However, recent projections of the future climate by the Intergovernmental Panel on Climate Change suggest that due to an increase of atmospheric greenhouse gases, the frequency and severity of droughts will increase in drought-prone areas, mostly in subtropical climates. This has raised major concern for the agricultural sector, particularly the vulnerable small-scale farmers who merely rely on rain for crop production. Farmers in the Luvuvhu River catchment are not an exception, as this area is considered economically poor, whereby a significant number of people are dependent on rain-fed farming for subsistence. This study was therefore conducted in order to improve agricultural productivity in the area and thus help in the development of measures to secure livelihoods of those vulnerable small-scale farmers. Two drought indices viz. Standardized Precipitation Evapotranspiration Index (SPEI) and Water Requirement Satisfaction Index (WRSI) were used to quantify drought. A 120-day maturing maize crop was considered and three consecutive planting dates were staggered based on the average start of the rainy season. Frequencies and probabilities during each growing stage of maize were calculated based on the results of the two indices. Temporal variations of drought severity from 1975 to 2015 were evaluated and trends were analyzed using the non-parametric Spearman’s Rank Correlation test at α (0.05) significance level. For assessing climate change impact on droughts, SPEI and WRSI were computed using an output from downscaled projections of CSIRO Mark3.5 under the SRES A2 emission scenario for the period 1980/81 – 2099/100. The frequency of drought was calculated and the difference of SPEI and WRSI means between future climate periods and the base period were assessed using the independent t-test at α (0.10) significance level in STATISTICA software. The study revealed that planting a 120-day maturing maize crop in December would pose a high risk of frequent severe-extreme droughts during the flowering to the grain-filling stage at Levubu, Lwamondo, Thohoyandou, and Tshiombo; while planting in October could place crops at a lower risk of reduced yield and even total crop failure. In contrast, stations located in the low-lying plains of the catchment (Punda Maria, Sigonde, and Pafuri) were exposed to frequent moderate droughts following planting in October, with favorable conditions noted following the December planting date. Further analysis on the performance of the crop under various drought conditions revealed that WRSI values corresponding to more intense drought conditions were detected during the December planting date for all stations. Moreover, at Punda Maria, Sigonde and Pafuri, it was observed that extreme drought (WRSI <50) occurred once in five seasons, regardless of the planting date. Temporal analysis on historical droughts in the area indicated that there had been eight agricultural seasons subjected to extreme widespread droughts resulting in total crop failure i.e. 1983/84, 1988/89, 1991/92, 1993/94, 2001/02, 2002/03, 2004/05 and 2014/15. Results of Spearman’s rank correlation test revealed weak increasing drought trends at Thohoyandou (ρ = of 0.5 for WRSI) and at Levubu and Lwamondo (ρ = of 0.4 for SPEI), with no significant trends at the other stations. The study further revealed that climate change would enhance the severity of drought across the catchment. This was statistically significant (at 10% significance level) for the near-future and intermediate-future climates, relative to the base period. Drought remains a threat to rain-fed maize production in the Luvuvhu River catchment area of South Africa. In order to mitigate the possible effects of droughts under climate change, optimal planting dates were recommended for each region. The use of seasonal forecasts during drought seasons would also be useful for local rain-fed maize growers especially in regions where moisture is available for a short period during the growing season. It was further recommended that the Government ensure proper support such as effective early warning systems and inputs to the farmers. Moreover, essential communication between scientists, decision makers, and the farmers can help in planning and decision making ahead of and during the occurrence of droughts. / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)

Page generated in 0.0849 seconds