• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • Tagged with
  • 11
  • 11
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing culture conditions to study keratocyte phenotypes in vitro /

Musselmann, Kurt. January 2006 (has links)
Dissertation (Ph.D.)--University of South Florida, 2006. / Includes vita. Includes bibliographical references (leaves 156-180). Also available online.
2

Neuropeptides and neurotransmitters in keratocytes : importance in corneal wound healing processes

Sloniecka, Marta January 2015 (has links)
Background: The cornea is the outermost transparent layer of the eye and it is responsible for the majorityof the eye’s total focusing power. Keratocytes are the resident cells of the corneal stroma and their function isto produce extracellular matrix components and to take part in corneal healing after injury, which may occurdue to trauma, infection or surgery. The process of corneal wound healing is complex. Shortly, keratocytesadjacent to the corneal wound undergo apoptosis and remaining cells start the process of proliferation andmigration in order to close the wound. Next, an influx of inflammatory cells such as macrophages andneutrophils occurs in order to clear the cornea from cellular debris. The final stage of the healing processrestores the quiescent state of keratocytes and remodels any disordered extracellular matrix components,leading to a healthy, transparent cornea. However, when the process of corneal wound healing is incompleteor disturbed, corneal scarring may occur, which can lead to significantly impaired vision. Despite extensiveresearch on corneal wound healing, corneal scarring remains a major cause of preventable blindness. Thehealing process is dependent on various cytokines and growth factors. However, it is possible that also othersignal substances are involved. Substance P (SP) is a neuropeptide well known for its role in pain perception.It has been shown that SP can also be produced by non-neuronal cells, including cells of the cornea, and thatit can have vast effects on physiological functions, including immune cell activity, and cellular processes, suchas cell migration, proliferation, and production of proinflammatory cytokines. Similarly, acetylcholine (ACh),a classical neurotransmitter, has also been reported to be produced by non-neuronal cells, including cornealepithelium, and to be involved in cell proliferation, angiogenesis, cell migration, apoptosis, and collagen geneexpression. In the studies of this thesis, it is hypothesized that neuropeptides and neurotransmitters areproduced by human keratocytes and that this production is increased in response to corneal injury. Moreover,it is hypothesized that the non-neuronal SP and ACh produced by injured keratocytes participate in cornealwound healing by enhancing keratocyte migration and proliferation, and/or by decreasing keratocyteapoptosis. The aims of this thesis project were to test these hypotheses and to study the underlying inter- andintracellular mechanisms of the effects of SP and ACh on keratocytes.Results: Cultured primary cells of the human corneal stroma expressed keratocyte markers (keratocan,lumican, CD34, and ALDH), the tachykinins SP and NKA, catecholamines (adrenaline, noradrenaline anddopamine), ACh, and glutamate. Moreover, the cells expressed neurokinin-1 and -2 receptors (NK-1R andNK-2R), dopamine receptor D2, muscarinic ACh receptors (mAChRs) M1, M3, M4 and M5, and NDMAR1glutamate receptor. Significant differences were observed between expression profiles in cultured keratocytesobtained from central and peripheral cornea. Such differences could also be seen between keratocytescultured under various serum concentrations. Expression and secretion of SP in cultured keratocytes wasincreased in response to injury in vitro. SP enhanced migration of cultured keratocytes through stimulation ofits preferred receptor, the NK-1R, and activation of the phosphatidylinositide 3-kinase and Rac1/RhoApathway and subsequent actin cytoskeleton reorganization and formation of focal adhesion points. Moreover,SP stimulation led to upregulated expression of the proinflammatory and chemotactic cytokine interleukin-8(IL-8), which also contributed significantly to SP-enhanced keratocyte migration and to attractingneutrophils. ACh enhanced keratocyte proliferation in vitro at low concentrations and this stimulation wasmediated through activation of mAChRs and activation of MAPK signalling. Moreover, ACh stimulation led toupregulation of two proliferation markers: PCNA and Ki-67. ACh was also able to protect cultured keratocytesfrom Fas-induced apoptosis, even at low concentrations. Activation of mAChRs was necessary for this latterprocess to occur. ACh reduced caspases 3/7 activation in Fas-treated keratocytes. Inhibition of the PKB/Aktpathway revealed that its activation is essential for mediating the anti-apoptotic effect of ACh in keratocytes.Conclusions: This thesis shows that human keratocytes express an array of neuropeptides (SP, NKA) andneurotransmitters (ACh, adrenaline, noradrenaline, dopamine and glutamate), and their receptors, and thatstimulation of NK-1R by SP and stimulation of mAChRs by ACh lead to keratocyte cellular processes that areknown to be involved in corneal wound healing. Specifically, SP enhances keratocyte migration throughupregulation of IL-8, ACh enhances keratocyte proliferation through activation of the MAPK signallingpathway, and ACh is able to protect keratocytes from apoptosis by activation of the PKB/Akt pathway. Takentogether, these findings suggest that both SP and ACh, if entered at the proper stage, could be beneficial forcorneal wound healing.
3

The effect of growth factors on the corneal stroma extracellular matrix production by keratocytes /

Etheredge, LaTia Shaquan. January 2009 (has links)
Dissertation (Ph.D.)--University of South Florida, 2009. / Includes vita. Includes bibliographical references. Also available online.
4

Free Standing Layer-by-layer Films Of Polyethyleneimine And Poly(l-lysine) For Potential Use In Corneal Stroma Engineering

Altay, Gizem 01 February 2011 (has links) (PDF)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films. It was shown that the LbL films could be easily peeled off from glass substrates due to the photocrosslinking of one of the LbL components, the hyaluronic acid. Film growth and composition were monitored with FTIR-ATR. Heights of peaks at 3383 cm-1, and 2958 cm-1increased along with the bilayer number confirming the polymer build-up. Film integrity and thickness were investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Films thicker than 5 bilayers (BLs) were found to be uniform in appearance and 10 BL (PEI/MeHA) films were calculated to be ca. 6 &mu / m thick. Atomic force microscopy (AFM) revealed that as the number of BLs increased, surface roughness decreased. Activity of methacrylated hyaluronic acid was shown by the increased resistance of photocrosslinked multilayer films against hydrolysis by hyaluronidase. Patterns could be created on the films by photocrosslinking further proving that the crosslinking step is successful. Since the ultimate goal was to construct a corneal stroma PEI/MA-HA films were tested with corneal stroma cells, keratocytes. Cell proliferation on PEI/MA-HA films was quite poor in comparison to TCPS. In order to improve the cell adhesion the tests were repeated with PLL/MA-HA. Collagen was added to decrease the hydrophilicity and introduce cell adhesion sequences (Arg-Gly-Asp, RGD) to improve cell proliferation on the films and thus PLL+Col/MA-HA films were also tested. Introduction of collagen to the PLL/MA-HA films was found to decrease water retention of the multilayer films and improve cell viability and proliferation. Col+PLL/MA-HA LbL thus appear to be a promising platform for tissue engineering, especially of corneal stroma.
5

The effect of growth factors on the corneal stroma extracellular matrix production by keratocytes

Etheredge, LaTia Shaquan. January 2009 (has links)
Dissertation (Ph.D.)--University of South Florida, 2009. / Title from PDF of title page. Document formatted into pages; contains 91 pages. Includes vita. Includes bibliographical references.
6

Bioengineering de greffons endothéliaux : versant cellulaire / Bioengineering of endothelial grafts : cellular view

Forest, Fabien 09 December 2016 (has links)
La cécité d’origine cornéenne est Ia deuxième cause de cécité dans le monde. Son traitement de choix est la kératoplastie. ll est aujourd’hui nécessaire de réfléchir à de nouvelles solutions pour remplacer la kératoplastie dans sa forme actuelle qui bien que satisfaisante, n’est pas totalement parfaite. En effet, les techniques actuelles de kératoplastie utilisent une allogreffe. Le greffon va subir chez le donneur une diminution de la densité des cellules endothéliales (CE) du greffon au fil du temps. Ce travail présente successivement les solutions abordées par le BiiGC pour produire des CE en masse ainsi que les différents supports en vue d’une kératoplastie lamellaire postérieure. Les solutions envisagées par le laboratoire BiiGC doivent permettre un transfert à l’être humain dans des conditions de sécurité et d’acceptabilité maximales. Les différents contrôles de l’identité des cellules obtenues et les contrôles de sécurité nécessitent une connaissance robuste de la biologie, du morphotype et du phénotype des CE cornéennes. Cette thèse présente les différentes exigences réglementaires et de qualité nécessaires à l’obtention de greffons cornéens bioengineerés. Le choix du BiiGC devant se conformer d’emblée à ces exigences en vue d’un transfert à l’être humain. Dans une première partie, nous présentons une revue de la littérature sur le bioengineering de greffons cornéens. La production de CE et de stroma seront ensuite exposés avec les différentes approches abordées par le BiiGC. Enfin, les différentes techniques de validation morphologiques et fonctionnelles de greffons obtenus seront présentées. / Corneal diseases are the first leading cause of blindness worldwide. Its treatment relies on keratoplasty which in its actual form is a satisfying but not a perfect solution. We have to think about new solutions for corneal graft. Today, corneal graft is often an allograft. With this technique, there is a loss of endothelial cell (EC) density through time. This work presents the solutions which BiiGC laboratory is working on for mass production of EC and different carriers for these cells for posterior keratoplasty. These solutions must be possible on human being with safety conditions. Controls of identity, of obtained cells and security controls need a strong knowledge of biology, morphology and phenotype of EC. This work presents the legal conditions of quality needed to obtain bioengineered corneal grafts. The choice of BiiGC laboratory must involve these conditions for a transfer to human being. In a first part, we present a review of the literature about corneal bioengineering. Production of EC and of corneal stroma are discussed with different approaches by BiiGC laboratory. In the end, the different techniques of morphological controls of corneal grafts are discussed.
7

Applications de la bioimpression assistée par laser à l’ingénierie du stroma cornéen / Applications of Laser-Assisted Bioprinting to corneal stroma engineering

Pages, Emeline 23 September 2015 (has links)
La bioimpression assistée par laser (LAB) permet de positionner des gouttesde cellules avec une précision micrométrique. Il est ainsi possible de donner uneorganisation initiale aux cellules au sein d’une structure tissulaire 3D. Notre objectif estd’utiliser le LAB pour reproduire l’histo-architecture du stroma cornéen. Le stroma cornéenest un assemblage transparent de lamelles d’une épaisseur totale de 500 μm. Au sein dechaque lamelle, les fibres de collagène ont une même direction, un même diamètre et sontrégulièrement espacées grâce à la présence de protéoglycanes spécifiques du stromacornéen. Pour reproduire cette organisation, nous avons fait l’hypothèse qu’en alignant desfibroblastes du stroma sur un hydrogel de collagène à l’aide du LAB, il serait possibled’aligner les fibres de collagène dans la même direction. Du fait que les cellules impriméessont vivantes et dynamiques, le motif cellulaire initialement imprimé est soumis à desprocessus d’auto-organisation. Il a donc fallu déterminer les paramètres, à la foisd’impression et de culture, permettant d’obtenir de façon reproductible des alignements decellules stables dans le temps. Grâce à la microscopie à génération de secondeharmonique, le remaniement des fibres de collagène par les fibroblastes cornéens a pu êtreobservé. La direction des fibres de collagène correspond à celle de l’alignement cellulaire.En imprimant les fibroblastes de cornée sur des couches successives de collagène, noussommes parvenus à reproduire les variations de direction des fibres de collagène d’unelamelle à l’autre qui sont observées dans le stroma cornéen natif. / Laser-Assisted Bioprinting allows positioning of cell droplets with amicrometric precision. It is thus possible to give an initial organization to the cells within a3D tissue structure. Our objective is to use LAB to reproduce the corneal stroma histoarchitecture.The corneal stroma is a transparent assembly of lamellae with a totalthickness of 500 μm. Within each lamella, collagen fibers have the same direction, thesame diameter, and a regular spacing thanks to the presence of proteoglycans which arespecific from the corneal stroma. To reproduce this organization, we make the hypothesisthat through corneal fibroblasts alignment, using LAB, on a collagen hydrogel, it would bepossible to align collagen fibers in the same direction. Because printed cells are alive anddynamic, the cell pattern initially printed is subjected to self-organization processes. It isthus necessary to determine the printing and culture parameters that promote reproducibleand stable cell alignments. By using second harmonic generation microscopy, collagenfiber reorganization by corneal fibroblasts has been observed. Collagen fiber direction ismatching with cell alignment. Corneal fibroblasts have been printed on successive collagenlayers; it allows reproducing the variations in collagen fiber direction from one lamella toanother that are observed in the native corneal stroma.
8

"Estudo laboratorial da cicatrização de córneas humanas após debridamento epitelial" / Laboratory study of the wound healing response to epithelial scrape injury in the human cornea

Ambrósio Júnior, Renato 19 May 2004 (has links)
Objetivo: Verificar resposta após debridamento epitelial de córneas humanas. Métodos: Córneas normais foram submetidas a debridamento antes da cirurgia de enucleação. Realizou-se histologia, TUNEL, Ki67, SMA e microscopia eletrônica. Resultados: Seis córneas foram debridadas e preservadas entre ½ e 65 horas, apresentando apoptose nos ceratócitos do estroma anterior. Células estromais em proliferação foram observadas apenas no tempo de 65 horas. Miofibroblastos não foram encontrados. Uma córnea serviu de controle. Conclusões: Os eventos observados em córneas humanas após debridamento epitelial, apoptose e proliferação dos ceratócitos, foram semelhantes aos descritos em animais de experimentação / Purpose: To examine the early wound healing response to epithelial scrape in human corneas. Methods: Normal corneas had epithelial scrape prior to enucleation. Histology, TUNEL assay, Ki67, SMA and transmission electron microscopy were performed. Results: Epithelial scrape was performed in six corneas from ½ to 65 hours prior to preservation. Keratocyte apoptosis was detected in the anterior stroma in all scraped corneas. Keratocyte proliferation was detected exclusively 65 hours after scrape. No myofibroblast was detected. One cornea was not scraped (control). Conclusion: Results obtained in human corneas (keratocyte apoptosis and proliferation) were similar to animal models
9

"Estudo laboratorial da cicatrização de córneas humanas após debridamento epitelial" / Laboratory study of the wound healing response to epithelial scrape injury in the human cornea

Renato Ambrósio Júnior 19 May 2004 (has links)
Objetivo: Verificar resposta após debridamento epitelial de córneas humanas. Métodos: Córneas normais foram submetidas a debridamento antes da cirurgia de enucleação. Realizou-se histologia, TUNEL, Ki67, SMA e microscopia eletrônica. Resultados: Seis córneas foram debridadas e preservadas entre ½ e 65 horas, apresentando apoptose nos ceratócitos do estroma anterior. Células estromais em proliferação foram observadas apenas no tempo de 65 horas. Miofibroblastos não foram encontrados. Uma córnea serviu de controle. Conclusões: Os eventos observados em córneas humanas após debridamento epitelial, apoptose e proliferação dos ceratócitos, foram semelhantes aos descritos em animais de experimentação / Purpose: To examine the early wound healing response to epithelial scrape in human corneas. Methods: Normal corneas had epithelial scrape prior to enucleation. Histology, TUNEL assay, Ki67, SMA and transmission electron microscopy were performed. Results: Epithelial scrape was performed in six corneas from ½ to 65 hours prior to preservation. Keratocyte apoptosis was detected in the anterior stroma in all scraped corneas. Keratocyte proliferation was detected exclusively 65 hours after scrape. No myofibroblast was detected. One cornea was not scraped (control). Conclusion: Results obtained in human corneas (keratocyte apoptosis and proliferation) were similar to animal models
10

Corneal injury to ex-vivo eyes exposed to a 3.8 micron laser /

Fyffe, James G. January 2005 (has links) (PDF)
Thesis (M.S.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).

Page generated in 0.0493 seconds