• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur la 2-cohomologie non abélienne : corps des modules / On the non abelian 2-cohomology : field of moduli

Djamaï, Bénaouda 16 May 2008 (has links)
Soit f : X ? Y un morphisme de schémas et G un Y -schéma en groupes. Lorsque G est abélien, la suite spectrale de Leray associée à f, Ep,q= Hp(Y,Rq,f.Gx)=> Hp+q(X,Gx), nous donne une suite exacte en basses dimensions : 0 ?H1(Y,f*G_x)? H1(X,Gx)?H0(Y,R1f*Gx)? H2(Y,f*Gx)?H2(X, Gx)tr?H1(Y,R1f*Gx)?H3(Y,f*Gx). Le but de ce travail est d'étudier l'analogue de cette situation lorsque G n'est plus abélien. La notion de gerbe introduite par Grothendieck permet de construire un substitut au cobord d0,1H0(Y,R1f*Gx)? H2(Y,f*Gx). Ici nous étudions plus particulièrement l'obstruction à descendre une Gx-gerbe sur X en une f*Gx-gerbe sur Y. Pour cela, à partir de l'interprétation de Giraud du R1f*Gx, nous construisons un substitut non abélien du H1(Y,R1f*Gx) et du cobord d1.1 :H1(Y,R1f*GX)?H3(Y, f*Gx), en termes de condition de corps des modules et de 2-gerbes. Nous donnerons ensuite deux exemples de descente de gerbes dans le cas non abélien: le premier, considéré par Grothendieck, est celui des surface fibrées sur des droites, le deuxième, de nature arithmétique, concerne l'extension maximale abélienne d'un corps des fractions d'un anneau local, excellent, henselien de dimension 2. / Let f: X-Y be a morphism of schemes and G a group scheme over Y. If G is abelian, the Leray spectral sequence associated to f, Epq=HP(Y, Rqf*Gx)==>Hp+q(X,Gx), gives rise to an exact sequence in low dimensions: 0- H1(y ,f*Gx)- H1 (X,Gx)- W(Y,R If*GX)_ H2(y ,f*Gx)- H2(X, Gx)tr_ H1(Y,R1f*GX)_ H3(Y,f*Gx). ln this thesis, we consider the case of a non abelian group G. The notion of a gerb, due to Grothendieck allows us to get an equivalent morphism to d0,1:H0(Y,R1f*Gx)-H2(Y,f*Gx). Here we study the obstruction to a Gx-gerb on X to be the image of an f*Gx-gerb on Y. For this aim, we use the Giraud's iterpretation ofR1f*Gx, to build an equivalent object to H1(Y,R1f*Gx) and an equivalent morphism to d1,1: H1(Y,R1f*Gx)_H3(Y,f*GX), in terms of field of moduli condition and 2-gerbs. We will then give two results in the non abelian case: a cohomological one, wich is the case of a surface fibred on a curve, studied by Grothendieck, and a arithrnetical one wich deals with the maximal abelian extension of the fractions field of a local, heselian, excellent ring of dimension 2.
2

Mauvaises places ramifiées dans le corps des modules d'un revêtement

Flon, Stéphane 07 June 2002 (has links) (PDF)
Ce travail se fonde sur le lien entre le corps des modules d'un revêtement et les espaces de Hurwitz. Pour un revêtement donné, l'arithmétique de ces espaces fournit des résultats sur la ramification du corps des modules au-dessus du corps de rationalité des points de branchement. Le théorème de Beckmann, qui circonscrit la ramification dans cette extension à certaines places, les mauvaises places, trouve ainsi une démonstration naturelle. Une analyse plus fine des espaces de Hurwitz fournit des informations sur les mauvaises places ne divisant pas l'ordre du groupe de monodromie du revetement (mais où les points de branchement se rencontrent) : l'idée consiste à considérer le revêtement du complété de l'espace de Hurwitz au-dessus du complété de l'espace de configuration de points. Pour une telle place, le lieu de branchement du revêtement se prolonge en une section arithmétique sur ce dernier espace, et la restriction du revêtement de Hurwitz à cette section fournit de l'information sur la ramification dans le corps des modules en la place considérée. Nous étudions ce problème de restriction dans un cadre plus général, en considérant le cas d'un revêtement modérément ramifié le long de diviseurs à croisements normaux restreint à une section, et en nous basant sur le théorème d'Abhyankar. Nous donnons une version effective de ce résultat de ramification dans le corps des modules, en fonction d'entiers qui dépendent des relations de congruence entre les points de branchement, ainsi que d'un choix de générateurs de l'inertie autour des composantes du bord de l'espace de configuration de points croisant la section. À cet effet, nous introduisons un certain type de twists de Dehn, les twists sarments, et nous décrivons leur action sur l'ensemble des classes de Nielsen. Une dernière partie de ce travail regroupe des résultats divers de descente du corps de définition d'un revêtement, qui utilisent des gerbes au-dessus des espaces de Hurwitz.

Page generated in 0.0687 seconds