Spelling suggestions: "subject:"correlation spectroscopy"" "subject:"borrelation spectroscopy""
101 |
Quantifying diffusion in biofilms : from model hydrogels to living biofilmsGolmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion.
Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge.
Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion.
For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect.
The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.
|
102 |
Agglomération et hétéroagglomération des nanoparticules d'argent en eaux doucesMaillette, Sébastien 04 1900 (has links)
Les nanomatériaux sont une classe de contaminants qui est de plus en plus présent dans l’environnement. Leur impact sur l’environnement dépendra de leur persistance, mobilité, toxicité et bioaccumulation. Chacun de ces paramètres dépendra de leur comportement physicochimique dans les eaux naturelles (i.e. dissolution et agglomération). L’objectif de cette étude est de comprendre l’agglomération et l’hétéroagglomération des nanoparticules d’argent dans l’environnement. Deux différentes sortes de nanoparticules d’argent (nAg; avec enrobage de citrate et avec enrobage d’acide polyacrylique) de 5 nm de diamètre ont été marquées de manière covalente à l’aide d’un marqueur fluorescent et ont été mélangées avec des colloïdes d’oxyde de silice (SiO2) ou d’argile (montmorillonite). L’homo- et hétéroagglomération des nAg ont été étudiés dans des conditions représentatives d’eaux douces naturelles (pH 7,0; force ionique 10 7 à 10-1 M de Ca2+). Les tailles ont été mesurées par spectroscopie de corrélation par fluorescence (FCS) et les résultats ont été confirmés à l’aide de la microscopie en champ sombre avec imagerie hyperspectrale (HSI). Les résultats ont démontrés que les nanoparticules d’argent à enrobage d’acide polyacrylique sont extrêmement stables sous toutes les conditions imposées, incluant la présence d’autres colloïdes et à des forces ioniques très élevées tandis que les nanoparticules d’argent avec enrobage de citrate ont formées des hétéroagrégats en présence des deux particules colloïdales. / Nanomaterials are a class of contaminants that are increasingly found in the natural environment. Their environmental risk will depend on their persistence, mobility, toxicity and bioaccumulation. Each of these parameters will depend strongly upon their physicochemical fate (dissolution, agglomeration) in natural waters. The goal of this paper is to understand the agglomeration and heteroagglomeration of silver nanoparticles in the environment. Two different silver nanoparticles (nAg; citrate coated and polyacrylic acid coated) with a diameter of 5 nm were covalently labelled with a fluorescent dye and then mixed with colloidal silicon oxides (SiO2) and clays (montmorillonite). The homo- and heteroagglomeration of the silver nanoparticles were then studied in waters that were representative of natural freshwaters (pH 7.0; ionic strength 10-7 to 10-1 M of Ca2+). Sizes were followed by fluorescence correlation spectroscopy (FCS) and results were validated using enhanced darkfield microscopy with hyperspectral imaging (HSI). Results have demonstrated that the polyacrylic acid coated nAg was extremely stable under all conditions, including in the presence of other colloids and at high ionic strength, whereas the citrate coated nAg formed heteroagregates in the presence of both natural colloidal particles.
|
103 |
Détection expérimentale de recrutements longues portées entre biomolécules dues à une force sélective et résonante : étude de faisabilité / Feasibility study of the experimental detection of long-range selective resonant recruitment forces between biomoléculesNardecchia, Ilaria 12 October 2012 (has links)
Ce travail de thèse parti de l'observation que la maintenance des fonctions cellulaires est basée sur l'orchestration précise d'interactions fonctionnelles entre biomolécules telles que l'ADN, l'ARN et les protéines. Bien que ces processus basiques ne montrent pas généralement une organisation spatiale stricte, ils semblent néanmoins contraints par des schémas dynamiques ou spatiaux précis. Cela pose ainsi la question des forces pouvant, dans un microenvironnement cellulaire, diriger les différents acteurs de processus biochimiques complexes au bon endroit, au bon moment et dans le bon ordre afin d'assurer les fonctions cellulaires essentielles. L'existence de forces sélectives à longue portée de nature électromagnétique, pouvant être responsables de l'extraordinaire efficacité des machineries biomoléculaires, est prédite par la mécanique quantique et l'électrodynamique; par longue portée, nous entendons entre 0.1 à 1 micron, ce qui est bien au delà de celle des forces traditionnelles reconnues comme les forces électrostatiques, de van der Waals-London ou les liaisons hydrogènes. Aucune procédure expérimentale ne fut proposée à ce jour pour confirmer ou infirmer cette hypothèse d'une utilisation efficace de telles forces électromagnétiques dans la matière vivante. Si ces forces sélectives de recrutement à longue portée sont effectivement actives au niveau biomoléculaire, cela constituerait un pas important vers une compréhension des processus et mécanismes cellulaires fondamentaux (expression génique, division cellulaire, signalisation, etc.). / The main subject of the present thesis work stems from the observation that the maintenance of cell functions is based on a precise orchestration of functional interactions between biomolecules such as DNA, RNA and proteins. Although these basic processes generally do not exhibit strict spatial organization, they seem constrained into a very accurate temporal - or dynamic - pattern. This raises the question of what types of physical forces can, in the cellular microenvironments, bring the various actors of complex biochemical processes both in the right place, at the right time and in the right order so as to ensure the essential cellular functions. The existence of selective, long-range forces of electromagnetic nature that may be responsible for the extraordinary efficiency of the biomolecular machineries is predicted by quantum mechanics and electrodynamics ; long-range meaning here of the order of 0.1-1 micron, well beyond the traditionally recognized forces, electrostatic ones, hydrogen bonds, van der Waals-London, etc.). Yet, to date, no experimental test has been proposed to disprove or confirm the hypothesis of an effective exploitation of such electromagnetic forces in living matter. If these selective, long-range recruitment forces were found to be active at the biomolecular level, this would represent an important step forward to the understanding of fundamental cellular processes and mechanisms (gene expression, cell division, signalling, etc.).
|
104 |
Neue Einblicke in die SNARE-vermittelte Fusion: Detektion einzelner Proteoliposomen mit einem konfokalen Mikroskop / New insights into SNARE-mediated fusion: Detection of single proteoliposomes with a confocal microscopeCypionka, Anna 17 December 2009 (has links)
No description available.
|
105 |
Molecular Sizing using Fluorescence Correlation Spectroscopy / Molecular Sizing using Fluorescence Correlation SpectroscopyLoman, Anastasia 29 June 2010 (has links)
No description available.
|
106 |
Interactions of FCHo2 with lipid membranesChwastek, Grzegorz 29 November 2013 (has links) (PDF)
Endocytosis is one of the most fundamental mechanisms by which the cell communicates with its surrounding. Specific signals are transduced through the cell membrane by a complex interplay between proteins and lipids. Clathrin depended endocytosis is one of important signalling pathways which leads to budding of the plasmalemma and a formation of endosomes. The FCHo2 is an essential protein at the initial stage of the this process. In is a membrane binding protein containing BAR (BIN, Amphiphysin, Rvs) domain which is responsible for a membrane binding. Although numerous valuable work on BAR proteins was published recently, the mechanistic description of a BAR domain functionality is missing. In present work we applied in vitro systems in order to gain knowledge about molecular basis of the activity of the FCHo2 BAR domain. In our studies we used supported lipid bilayers (SLBs) and lipid monolayers as s model membrane system.
The experiments were carried out with a minimal number of components including the purified FCHo2 BAR domain. Using SLBs we showed that the BAR domain can bind to entirely flat bilayers. We also demonstrated that these interactions depend on the negatively charged lipid species incorporated in the membrane. We designed an assay which allows to quantify the membrane tubulation. We found out that the interaction of the FCHo2 BAR domain with the lipid membrane is concentration dependent. We showed that an area of the bilayer deformed by the protein depends on the amount of the used BAR domain.
In order to study the relation between the mobility of lipids and the activity of FCHo2 BAR domain we designed a small-volume monolayer trough. The design of this micro-chamber allows for the implementation of the light microscopy. We demonstrated that the measured lipid diffusion in the monolayer by our new approach is in agreement with literature data. We carried out fluorescence correlation spectroscopy (FCS) experiments at different density of lipids at the water-air interface.We showed that the FCHo2 BAR domain binding affinity is proportional to the mean molecular area (MMA). We additionally demonstrated that the increased protein binding is correlated with the higher lipid mobility in the monolayer.
Additionally, by curing out high-speed atomic force microscopy (hsAFM) we acquired the structural information about FCHo2 BAR domains orientation at the membrane with a high spatio-temporal resolution. Obtained data indicate the BAR domains interact witheach other by many different contact sites what results in a variety of protein orientations in a protein assemble.
|
107 |
Quantifying diffusion in biofilms : from model hydrogels to living biofilmsGolmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion.
Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge.
Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion.
For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect.
The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.
|
108 |
Raman Spectroscopy Applications to High Energy MaterialsSil, Sanchita January 2014 (has links) (PDF)
Detection of explosives has always been a challenging issue all over the world. Different analytical techniques and instrumentation methods have been explored to obtain a 100% fail proof detector. Some technologies have matured and have been deployed in the field already. However, active research is still being pursued to make the ultimate explosive detection device. The present thesis broadly addresses the development of Raman spectroscopy based techniques for the detection of explosives. Although Raman spectroscopy has technologically developed and has become a regular tool for chemical identification, its use in the field of detection of explosives has been limited. Two aspects of detection were addressed in this thesis.
The first part consists of the detection of minute quantities or traces of explosives using a Raman based method. In order to approach this problem, surface enhanced Raman spectroscopy (SERS), an offshoot of Raman spectroscopy was explored. Chapters 2-4 deal with developing efficient SERS substrates. In this endeavour, the first and the most obvious choice as SERS substrates were silver (Ag) nanoparticles (NPs). However, we were exploring methods that could be simple one-pot synthesis methods, cost-effective and without employing strong reducing agents (green). Therefore, Ag NPs were synthesized using biosynthetic route. These nanoparticles were used to study their SERS efficiency. Sub-nano molar concentration of dye as well explosive like trinitrotoluene (TNT) and hexanitrohexaazaisowurtzitane (CL-20) could be obtained for both the clove reduced as well as pepper Ag nanoparticles. Hence Ag NPs are very efficient SERS substrates. In the second part of the work on SERS, bimetallic nanoparticles with core-shell (Agcore-Aushell) architecture were synthesized, characterized and tested for SERS activity. After successful synthesis and characterization of the bimetallic nanoparticles, these were tested for their SERS activities using a dye molecule and an explosive molecule. SERS spectra could be obtained for the bimetallic nanoparticles. It was observed that the sensitivity of these NPs were almost at par with the mono-metallic Ag NPs. In order to bring SERS from laboratory to field, a more practical approach was to prepare solid SERS substrates or SERS substrates on solid platform. In the next chapter, we ventured into the most abundant material which forms the backbone of the organic world, carbon. Various carbonaceous materials ranging from chemically synthesized graphene, graphene oxide, multi-walled carbon nanotube (MWCNT), graphite and activated charcoal were explored as potential substrates for surface enhanced Raman spectroscopic applications. The analytes chosen for this particular study were some fluorescent molecules such as rhodamine B (RB), rhodamine 6G (R6G), crystal violet (CV), Nile blue A (NBA) and a non-fluorescent molecule acetaminophen, commonly known as paracetamol. Enhanced Raman signals were observed for the fluorescent molecules, especially for the molecules whose absorbance maxima are near the excitation wavelength of the laser (514.5 nm). The most interesting outcome of this work was obtaining enhanced Raman signals of nanomolar concentration of R6G on activated charcoal. However, for the non-fluorescent molecule, paracetamol, Raman spectra could not be observed beyond
-5 10M concentration for all the carbon substrates including chemically synthesized graphene and MWCNT. This study was crucial in our quest for an ideal SERS substrate. Our observations let us to conclude that chemically synthesized graphene was not the only candidate for the preparation of SERS substrates. Since carbon materials efficiently adsorb and also provide a separate channel for energy decay (fluorescence quenching), even activated charcoal could be employed as a SERS platform. However, carbon alone could not provide an effective solution for the preparation of SERS substrates. Therefore, combining the plasmonic effect of the metal nanoparticles with the efficient adsorption and fluorescence quenching of carbon materials would be ideal. In the next part of the carbon studies, graphene-Ag composites which were either prepared by in situ reduction process or physically mixed were studied for SERS activity. An ideal SERS substrate should possess the following properties:
(i) Support plasmon, thereby provide SERS enhancement
(ii) Easy to fabricate or synthesize (large scale/bulk)
(iii) Ensure high reproducibility and sensitivity
(iv) Low false alarm from matrix chemicals
(v) Cost effective
(vi) Solid substrate (in the form of chip, pellet, slide etc.)
Hence, as a final study, carbon silver based composites were explored. R6G was chosen as an analyte again and SERS experiments were conducted. Raman signals at low concentration could be obtained for the carbon-Ag composites as well. In addition, feasibility experiments were also conducted for an explosive molecule, FOX-7. From these preliminary experiments we observed that carbon-metal NP composites can be efficient, cost-effective SERS substrates that will overcome the current issue.
The previous chapters dealt with the trace detection of explosives. The next part of the thesis deals with the development of the Raman spectroscopic methods for non-invasive detection of concealed objects. Chapters 4 and 5 primarily focus on explosives detection. Spatially offset Raman spectroscopy (SORS) instrumentation was developed in the laboratory for non-invasive detection solid and liquid explosives. Several experiments were carried out to detect concealed materials inside high density polyethylene (HDPE) containers, coloured glass bottles, envelopes etc. with this technique, Raman signals of materials could be retrieved even within 4 mm thick outer-layer. SORS imaging experiments were also performed on bilayered compounds, tablets etc. However, while performing the SORS experiments, it was observed that due to the restriction in geometry imposed by the method, the signals from the inner-layers could be obtained only up to a certain depth. This posed a serious limitation of SORS for practical scenarios, where the thickness of the outer layer may be tens of mm. In such situation, SORS may not be an effective method. We then performed Raman experiments using a transmission geometry using a series of samples. The transmission Raman (TR) experiments yielded better SNR for the inner (concealed) material as compared to the outer material. Although transmission Raman experiments yielded better signal but these experiments were again geometry dependent, hence, less flexible and TR experiments did not provide information about the position of the underlying materials.
In order to obtain complete information, it was necessary to understand photon migration in a multiple scattering medium. It is known that a photon in a multiple scattering medium may be approximated to undergo a random-walk. Statistically, the photon that undergoes multiple scattering in a medium loses its sense of origin (direction), hence, there is a finite probability to observe the exiting photon in any direction. Rayleigh and NIR based imaging modalities have been conducted using this model. Diffuse optical tomographic (DOT) measurements also deal with measuring the photons that have exited the sample after undergoing multiple scattering in a turbid medium. If it was possible to collect the Rayleigh photons or the diffuse photons in DOT experiments, in principle, Raman photons could also be collected from several directions. It was then proposed that if Rayleigh scattered photons can exit at 4π solid angle from a sample, then it can be assumed that some Rayleigh photons may convert to Raman photons, which in turn, shall have a finite probability to exit the sample from all the sides (4π solid angles). This idea of collecting Raman photons has never been discussed before! Thus, as expected based on the above principles, we were able to record Raman scattered photons at all angles and on all sides. This new technique has been
termed as ‘Universal Multiple Angle Raman Spectroscopy (UMARS)’. Monte Carlo
simulation studies were also performed to understand the distribution of photons in a multiple scattering medium. Simulation studies also revealed that Raman photons exited from all sides of the medium at varying percentages. Hence, several fiber optic probes were designed for illumination and collection to perform the UMARS experiments for samples concealed at depths beyond 20 mm. UMARS was not only applied successfully for the detection of concealed explosives, but also for biologically relevant samples as well. In fact a pharmaceutical tablet as thick as 7 mm was also tested with UMARS and signals could be successfully obtained. Since the UMARS signals were obtained from all possible angles, imaging experiments were also conducted to obtain sample specific information. Frequency-specific images of bilayer materials could be obtained. In the case where one material was concealed within another, the reconstruction of the frequency-specific intensities in a contour plot revealed the position of the concealed layer. One of the most challenging and exciting studies that was conducted was to use UMARS to obtain shapes of hidden materials. Several shapes such as dumbbell, ellipsoid etc were fabricated (made of glass) and were filled with a test chemical, trans-stilbene (TS). This shape was placed inside an outer material like ammonium nitrate (AN) that was taken in a glass beaker. The diameter of the beaker was varied from 25 mm to 60 mm. A series of UMARS measurement was carried out with 10
collection fiber optic probes. The spatial resolution (vertical) was varied from 200 μm to 1 mm. Series of UMARS images were obtained which were then processed and the intensity of the individual fibers were averaged (CCD row pixels) based on the image of the individual fiber on the CCD. The frequency specific intensity of the materials was utilized to reconstruct 2D or a 3D shape. The shapes of the objects could be clearly discerned using UMARS imaging. This marks a major step for the development of UMARS as a 3D imaging modality. UMARS experiments conducted so far have affirmed our belief that this technology can be used as an effective technique for screening solid and liquid samples at airports, railway stations and other entry points. 3D imaging for biomedical diagnostics will provide molecular information in addition to the location and shape of an object inside a tissue such as calcified masses and bones.
In the final part of the thesis, 2D Raman correlation spectroscopic method was applied to understand the dynamics of a system that was subjected to external perturbation. In the field of explosive processing and formulations, large batches are generally prepared. However, it is very difficult to ascertain the molecular or structural changes that occur during the processing of these formulations in situ. Analytical methods to monitor the changes online are limited. Raman spectroscopy can be an effective technique for such measurements. This process however, generates a large number of spectra. In such cases, it becomes cumbersome to handle such large number of data and obtain meaningful information. 2D correlation spectroscopy can be applied under such situations. 2D correlation analysis generates essentially two maps, synchronous and asynchronous. In this study, 2D Raman correlation spectroscopy was applied to ammonium nitrate that was subjected to temperature variations. 2D maps were constructed to obtain information about the structural changes associated with temperature. The synchronous map reveals the overall similarity of the intensity changes. Whereas, the 2D asynchronous maps provide the sequence of changes that occur. Based on the set of well defined rules proposed by Isao Noda, the synchronous and the asynchronous correlation maps were analysed. Hence, generalized 2D correlation spectroscopy can be extended to any kind of perturbation and will prove useful in understanding the structural dynamics.
The objective of the thesis was to explore various facets of Raman spectroscopy that would be useful in the field of high energy materials specifically in the detection of explosives. Attempts were made for the development of trace detection of explosives using Raman based technique, SERS. In addition, bulk detection of concealed explosives was performed non-invasively using SORS and UMARS. In the field of high energy materials, these techniques will find immense applications. Raman spectroscopy, as we saw is a very important technique that can be used as a stand-alone method and can also be interfaced with other analytical or imaging modalities. This treatise is an example where the strength of this powerful spectroscopic method has been explored to some extent.
|
109 |
Nanoscale Photonics / From single molecule nanofluidics to light-matter interaction in nanostructuresGhosh, Siddharth 15 August 2016 (has links)
No description available.
|
110 |
Dvouohnisková FCS ve výzkumu koloidů / Dual-focus FCS in colloidal researchChovancová, Romana January 2015 (has links)
Tato práce se zabývá studiem fluorescenčně značeného hyaluronanu, konkrétně rhodaminylamino hyaluronátu sodného (Hya-Rh, 40 kDa), pomocí dvouohniskové fluorescenční korelační spektroskopie (2f-FCS). Nejdříve byla prostudována literatura týkající se využití FCS techniky v koloidní chemii a při studiu polymerů, přičemž následně byly shrnuty veškeré poznatky o využití 2f-FCS metody. Na základě prvotních měření byl zjištěn vhodný postup přípravy a způsob uchovávání vzorku Hya-Rh používaném pro následující experimenty. Záhy byly prostudovány možné vlivy koncentrace Hya-Rh na jeho difúzní charakteristiky jak ve vodě, tak ve fyziologickém roztoku. Následně bylo studováno chování Hya-Rh a vliv koncentrace solí alkalických kovů ve vodných roztocích těchto solí a fluorescenčně značeného hyaluronanu. Poté bylo sledováno chování Hya-Rh v závislosti na koncentraci velmi nízkomolekulárního hyaluronanu (VLMW HA, 404 kDa) v čisté vodě i ve fyziologickém roztoku, přičemž získané výsledky byly mezi sebou porovnány. Nakonec bylo využití 2f-FCS metody celkově zhodnoceno a popsáno z hlediska studia chování fluorescenčně značeného hyaluronanu v roztocích.
|
Page generated in 0.1332 seconds