• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 37
  • 33
  • 21
  • 13
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Laser surface alloying of copper with Ni-based hardfacing alloys for enhancing hardness and corrosion resistance

Kam, Weng Seng January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
22

Embedded Reference Electrodes for Corrosion Potential Monitoring, Electrochemical Characterization, and Controlled-Potential Cathodic Protection

Merten, Bobbi Jo Elizabeth January 2012 (has links)
A thin wire Ag/AgCl reference electrode was prepared using 50 μm Ag wire in dilute FeCl3. The wire was embedded beneath the polyurethane topcoat of two sacrificial coating systems to monitor their corrosion potential. This is the first report of a reference electrode embedded between organic coating layers to monitor substrate health. The embedded reference electrode (ERE) successfully monitored the corrosion potential of Mg primer on AA 2024-T3 for 800 days of constant immersion in dilute Harrison’s solution. Zn primer on steel had low accuracy in comparison. This is in part due to short circuiting by Zn oxidation products, which are much more conductive than Mg corrosion products. Data interpretation was improved through statistical analysis. On average, ERE corrosion potentials are 0.1 to 0.2 V and 0.2 to 0.3 V more positive than a saturated calomel electrode (SCE) in solution for AA 2024-T3 and steel coating systems, respectively. Further research may confirm that ERE obtains corrosion potential information not possible by an exterior, conventional reference electrode. The ERE is stable under polarization. AA 2024-T3 was polarized to -0.95 V vs ERE to emulate controlled potential cathodic protection (CPCP) applications. Polarizations of -0.75 V vs ERE are recommended for future experiments to minimize cathodic delamination. The ERE was utilized to analyze coating mixtures of lithium carbonate, magnesium nitrate, and Mg metal on AA2024-T3. Corrosion potential, low frequency impedance by electrochemical impedance spectroscopy (EIS), and noise resistance by electrochemical noise method (ENM) were reported. Coating performance ranking is consistent with standard electrochemical characterization and visual analyses. The results suggest anti-corrosion resistance superior to a standard Mg primer following 1600 hours of B117 salt spray. Both lithium carbonate and magnesium nitrate are necessary to achieve corrosion protection. Unique corrosion protective coatings for aluminum could be designed through continued mixture optimization. The Ag wire ERE has been utilized for the characterization and ranking of experimental coatings on metal substrates. Structural health monitoring and corrosion potential feedback of cathodic protection systems are additional uses. There is some indication that CPCP may be applied by ERE to control the substrate polarization for an organic coating system.
23

Crevice corrosion resistances of new high strength cobalt-chromium-molybdenum-carbon alloys

Devine, Thomas Maurice January 1974 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Metallurgy and Material Science, 1974. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. Bibliography: leaves 56-59. / by Thomas Maurice Devine, Jr. / Ph.D.
24

High-strength stainless steels for corrosion mitigation in prestressed concrete: development and evaluation

Moser, Robert David 16 May 2011 (has links)
The use of stainless steel alloys in reinforced concrete structures has shown great success in mitigating corrosion in even the most severe of exposures. However, the use of high-strength stainless steels (HSSSs) for corrosion mitigation in prestressed concrete (PSC) structures has received limited attention. To address these deficiencies in knowledge, an experimental study was conducted to investigate the feasibility of using HSSSs for corrosion mitigation in PSC. The study examined mechanical behavior, corrosion resistance, and techniques for the production of HSSS prestressing strands. Stainless steel grades 304, 316, 2101, 2205, 2304, and 17-7 along with a 1080 prestressing steel control were included in the study. Tensile strengths of 1250 to 1550 MPa (181 to 225 ksi) were achieved in the cold-drawn HSSSs. 1000 hr stress relaxation of all candidate HSSSs was predicted to be between 6 and 8 % based on the results of 200 hr tests conducted at 70 % of the ultimate tensile strength. Residual stresses due to the cold drawing had a significant influence on stress vs. strain behavior and stress relaxation. Electrochemical corrosion testing found that in solutions simulating alkaline concrete, all HSSSs showed exceptional corrosion resistance at chloride (Cl-) concentrations from zero to 0.25 M. However, when exposed to solutions simulating carbonated concrete, corrosion resistance was reduced and the only HSSSs with acceptable corrosion resistance were duplex grades 2205 and 2304, with 2205 resistant to corrosion initiation at Cl- concentrations up to 1.0 M (twice that in seawater). Based on these results, duplex grades 2205 and 2304 were identified as optimal HSSSs and were included in additional studies which found that: (1) 2304 is susceptible to corrosion when tested in a stranded geometry, (2) 2205 and 2304 are not susceptible to stress corrosion cracking, and (3) 2205 and 2304 are susceptible to hydrogen embrittlement. Efforts focused on the production of 2205 and 2304 prestressing strands showed that they could be produced as strands using existing ASTM A416 prestressing strand production facilities. Due to the ferromagnetic properties of 2205 and 2304, a low-relaxation heat treatment was found to be a viable option to reduce stress relaxation and improve mechanical properties. The overall conclusion of the study was that HSSSs, especially duplex grades 2205 and 2304, show excellent promise to mitigate corrosion if utilized as prestressing reinforcement in PSC structures exposed to severe marine environments.
25

Friction stir processing parameters and property distributions in cast nickel aluminum bronze

Rosemark, Brian P. 12 1900 (has links)
Cast nickel-aluminum bronze (NAB) alloy is specified for many marine applications, including ship propellers, due to its excellent corrosion-resistance combined with acceptable mechanical properties. Friction stir processing (FSP) can be used to improve the alloyâ s mechanical properties by localized microstructure modification in the cast material. FSP converts an as-cast microstructure to a wrought condition in the absence of macroscopic shape change, closes porosity, and provides a means to surface harden the castings. The closure of porosity near the surface of the material may shorten the manufacturing and processing time for ship propellers. The surface hardening of cast NAB alloy can be used to increase the wear life of ship propellers. Rockwell Scientific Corporation (now Teledyne Scientific Corporation) supplied three Nickel Aluminum Bronze alloy plates which have been friction stir processed in a raster pattern under a Defense Advanced Research Project Agency (DARPA) project. Each plate had been processed using a different tool RPM and IPM (inches per minute of transverse) combination. Miniature tensile samples were sectioned from the FSP zone and surrounding base metal and mechanical property distributions were determined in these regions. The material within the FSP zone exhibited consistently higher yield strengths, ultimate tensile strengths, and ductilities than the as-cast base metal.
26

Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses

Ayyagari, Venkata Aditya 12 1900 (has links)
Bulk metallic glasses (BMGs) have received significant research interest due to their completely amorphous structure which results in unique structural and functional properties. Absence of grain boundaries and secondary phases in BMGs results in high corrosion resistance in many different environments. Understanding and tailoring the corrosion behavior can be significant for various structural applications in bulk form as well as coatings. In this study, the corrosion behavior of several Zr-based and Fe-Co based BMGs was evaluated to understand the effect of chemistry as well as quenched in free volume on corrosion behavior and mechanisms. Presence of Nb in Zr-based alloys was found to significantly improve corrosion resistance due to the formation of a stable passive oxide. Relaxed glasses showed lower rates compared to the as-cast alloys. This was attributed to lowering of chemical potential from the reduced fraction of free volume. Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques helped in quantifying the corrosion rate and polarization resistance. The effect of alloy composition was quantified by extensive surface analysis using Raman spectroscopy, energy dispersive x-ray spectroscopy and auger spectroscopy. Pitting intensity was higher in the as-cast glasses than the relaxed glasses. The electrochemical behavior of a Zr-Ti-Cu-Ni-Be bulk metallic glass subjected to high strain processing was studied. High strain processing caused shear band formation and an increase in the free volume. Potentiodynamic polarization and EIS showed a strong correlation between the enthalpy of structural relaxation and corrosion rate and polarization resistance. Pitting was observed to preferentially occur on shear bands in the processed samples, while it was stochastic in unprocessed glass. The corrosion analysis of Co-Fe glasses showed an increase in corrosion current density when Fe content was increased from 0 to 7 at%. The corrosion resistance improved when Fe content was further increased to 15 at%. Similar trend was seen in EIS studies. The improved corrosion resistance at 15 at% Fe can be attributed to the large supercooled region that facilitates the formation of completely amorphous alloy, in contrast to lower Fe containing alloys, where short range ordering may deteriorate the corrosion resistance. Porous metallic glass structure was developed by electrochemical dealloying via cyclic voltammetry. Mechanical properties and changes in electrical conductivity were measured as a function of depth from surface by nano-indentation and nano electrical contact resistance technique. The nanoporous layer was found have hardness of 0.41 GPa and elastic modulus of nearly 22 GPa. The resistivity of the nanoporous layer continuously decreased when moving towards the substrate as the indentation depth increased which is attributed to the gradient in pore size.
27

Using ruthenium to modify surface properties of austenitic stainless steel for improved corrosion resistance

Moyo, Fortunate January 2017 (has links)
A thesis submitted to the Faculty of Engineering and the Built Environment, University of Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy (Engineering), 2017 / Chromium oxide provides an inexpensive and practical means of increasing the corrosion resistance of austenitic stainless steel in most environments. However, the oxide is prone to dissolve in reducing acids and in chloride containing solutions, which compromises the durability and effective operation of structures made of austenitic stainless steel. This research project explored the use of thin ruthenium surface alloys produced by ion implantation, RF sputtering and pulsed electrodeposition (PED) to improve the corrosion resistance of AISI 304L austenitic stainless steel in reducing acids and chloride solutions via a technique known as cathodic modification. The properties of the alloyed 304L stainless steel were evaluated using a number of tools including X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), potentiodynamic polarisation, and electrochemical impedance spectroscopy (EIS). Preliminary tests in 1 M sulphuric acid showed that the ruthenium surface alloys sufficiently raised the corrosion potential of 304L stainless steel to ranges where the stability of chromium oxide is guaranteed. Surface alloys produced by RF sputtering and PED were associated with the best corrosion resistance, and protection efficiencies of at least 85%, but they spalled during corrosion exposure rendering them unsuitable for corrosion application. The corrosion of the ruthenium implanted surface alloys exhibited a strong dependence on the surface roughness of the stainless steel, with the least corrosion rates achieved on rough 304L stainless steel samples implanted with 1016 Ru/cm2 at 50 keV. Corrosion characterisation of these ruthenium implanted surface alloys was studied in various corrosive media including sulphuric acid, sodium chloride, magnesium chloride and simulated fuel cell solutions. Their corrosion rates in sulphuric acid decreased with increase in acid concentration, and exhibited non-Arrhenius behaviour in the acid solutions; corrosion rates were unaffected by increasing exposure temperature from 25 to 50°C. In 3.5 wt% sodium chloride, addition of ruthenium via ion implantation changed pit morphology from elongated to circular, indicating a diminished tendency for pits to initiate at manganese sulphide stringers. Corrosion rates of the ruthenium implanted stainless steels in the simulated fuel cell solutions were at least 69% lower than the target corrosion rate for use in polymer electrode membrane fuel cells (PEMFCs), thus presenting a possible practical application of ruthenium surface alloyed austenitic stainless steel. / CK2018
28

Solute partitioning of Fe-Cr-Mn-Ni-C alloys during solidification

Kundrat, David Malcolm January 1980 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / by David Malcolm Kundrat. / Sc.D.
29

Material Wear in Multilayered Separable Electrical Contacts: Modeling and Experimentation

Wang, Yuanyuan January 2015 (has links)
In electrical contacts, thin films of nickel and gold or silver are traditionally plated on top of a copper base plate to provide corrosion resistance and wear protection. Most recently, the rising cost of noble metals and intensified competition in manufacturing technology has driven the industry towards thinner plating layers, which gives rise to questions regarding how interfacial contact and wear is affected by plating thickness and material characteristics. This study uses a combination of finite element analysis and ex-situ wear measurement to determine the effect of gold plating thickness on wear performance under linear reciprocating sliding contact. Correlations between predicted and measured results lead to insight into the stress state within the multi-layer system under contact conditions as well as a wear map for gold platings that can be used to inform future connector designs. The middle layer material, Ni, is relatedly inexpensive, but takes a relatively long time to deposit. Because this deposition time has a direct influence on the cost of manufacturing, it is important to reduce the Ni thickness as well. This project thus determines how different combinations of Ni and Au properties influence wear and subsurface layer exposure, which is critical for determining the makeup of future, low-cost, connector designs.
30

Evaluation of inorganic corrosion inhibition of mild steel and Aluminium alloy in acidic environment.

Sanni, Omotayo. January 2013 (has links)
M. Tech. Chemical Engineering. / Discusses the effect of ferrous gluconate (FG) and zinc gluconate (ZG) as novel corrosion inhibitors on the corrosion rate of mild steel and aluminium alloy in 3.5% NaCl and 0.5 M H2SO4 media was investigated by electrochemical and weight loss techniques. The effect of inhibitor concentration was investigated. The concentration of these inhibitor ranges from 0.5 to 2.0% g/v at a temperature of 28OC. The synergetic effect of these inhibitors was also studied. High resolution scanning electron microscopy equipped with energy dispersive spectroscopy (HR-SEM/EDS) and Raman spectroscopy was used to characterize the surface morphology of the metals before and after corrosion. Experimental results revealed that ferrous gluconate and zinc gluconate in 3.5% NaCl and 0.5 M H2SO4 solution decreased the corrosion rate at the different concentrations studied. Maximum inhibition efficiency of 100% was achieved for mild steel at 0.5% g/v concentration of FG, 0.5% g/v concentration of ZG and 1.5% g/v synergetic of FG + ZG in 3.5% NaCl solution. Similarly, 100% inhibition efficiency was obtained for aluminium alloy at different media studied (3.5% NaCl and 0.5 M H2SO4). The experimental results obtained from potentiodynamic polarization method showed that the presence of FG and ZG in 3.5% NaCl and 0.5 M H2SO4 solutions decreases the corrosion current densities (icorr) and corrosion rates (CR), and increases the polarization resistance (Rp). It was observed that the inhibitor efficiency depends on the corrosive media, concentration of the inhibitor and the substrate material. The adsorption characteristics of FG and ZG were best described by the Langmuir and Freundlich isotherms. Good correlation exists between the results obtained from both polarization and weight loss methods.

Page generated in 0.109 seconds