• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 37
  • 33
  • 21
  • 13
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The SCC behavior of austenitic alloys in an oxygen-free CO₂ environment containing chloride ions

Imrich, Kenneth J. January 1989 (has links)
Stress-corrosion cracking of austenitic alloys in an oxygen-free carbon dioxide environment containing chloride ions was studied under static conditions. Stiffness and X-ray measurements supported results obtained from SEM photomicrographs indicating that the CT specimens loaded to a stress intensity of 22 ksi-in<sup>.5</sup> were not susceptible to SCC in this environment. These alloys were also evaluated for their SCC resistance in boiling MgCl₂ and NaCl solutions. Results of this study indicated that alloys containing higher nickel contents were more resistant to chloride SCC. / Master of Science
42

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Conrad, Heidi A. 12 1900 (has links)
The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH &#8805; 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
43

Surface Modifications of Steels to Improve Corrosion Resistance in Sulfidizing-Oxidizing Environments

Behrani, Vikas 26 September 2007 (has links)
Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was : (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3)understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.
44

Short term observations of in vitro biocorrosion of two commonly used implant alloys

Lin, Hsin-Yi. January 2002 (has links)
Thesis (Ph. D.)--Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
45

Corrosão de aços inoxidáveis avançados em meios fisiológicos / Corrosion of advanced stainless steel in physiological solutions

TERADA, MAYSA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:54:28Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:42Z (GMT). No. of bitstreams: 0 / Este trabalho tem como objetivo principal investigar o comportamento frente à corrosão de aços inoxidáveis avançados em meios fisiológicos. Foram selecionados para o estudo quatro aços inoxidáveis visando avaliar o potencial destes para aplicações em implantes cirúrgicos: um aço superferrítico (DIN W. Nr. 1.4575), a Incoloy MA 956, contendo alumínio e óxido de ítrio, um aço austenítico DIN W. Nr. 1.4970 e um aço superaustenítico obtido por meio da adição de 0,87% de nitrogênio ao aço dúplex DIN W. Nr. 1.4460. Os três primeiros aços contêm baixo teor de níquel e suas películas protetoras são ricas em cromo, enquanto a Incoloy MA 956 é isenta de níquel, e rica em alumínio, o que influencia o seu filme passivo. Os materiais foram analisados usando técnicas de espectroscopia de impedância eletroquímica (EIE), polarização potenciodinâmica, técnica do eletrodo vibrante, microscopia eletroquímica de varredura, microscopia eletrônica de varredura de emissão de campo, microscopia ótica e microscopia eletrônica de varredura. Os meios escolhidos para avaliação da resistência à corrosão foram a solução de Hanks, um meio de cultura e uma solução tamponada com fosfato. Os resultados de EIE foram interpretados usando circuitos elétricos equivalentes que simularam uma camada passiva dúplex em todos os materiais analisados. Todos os materiais analisados apresentaram resistência à corrosão superior à do aço inoxidável AISI 316L, correspondente ao ASTM F-138, que é o mais utilizado na fabricação de implantes metálicos. Também foi destacada a importância do tratamento de solubilização nos aços com alto teor de nitrogênio. O DIN W. Nr. 1.4970 foi considerado citotóxico e sua potencialidade para uso como biomaterial, rejeitada. O DIN W. Nr. 1.4575 e Incoloy MA 956 podem ser usados como biomateriais, mas somente em próteses odontológicas ou de fácil remoção, devido ao seu comportamento ferromagnético. O DIN W. Nr. 1.4460 com 0,87% de nitrogênio foi o que apresentou as condições mais apropriadas para uso como biomaterial, inclusive para próteses ortopédicas. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
46

Microestrutura de solidificação e resistencias mecanicas e a corrosão de ligas Pb-Sn diluidas / Solidification microstructures and mechanical and corrosion resistances of dilute Pb-Sn alloys

Peixoto, Leandro César de Lorena 13 August 2018 (has links)
Orientadores: Amauri Garcia, Wislei Riuper Osorio / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-13T18:01:29Z (GMT). No. of bitstreams: 1 Peixoto_LeandroCesardeLorena_M.pdf: 5871010 bytes, checksum: f7403606c814ec8a30965352f0a93e87 (MD5) Previous issue date: 2009 / Resumo: Produtores de baterias chumbo-ácido têm modificado os processos de produção e composição química das ligas utilizadas nas grades das baterias com intuito de diminuir o seu peso final, bem como reduzir os custos de produção e também aumentar o ciclo de vida útil e a resistência à corrosão. As morfologias das estruturas de solidificação, caracterizadas principalmente por arranjos celulares e dendríticos, e suas grandezas representadas por espaçamentos celulares e dendríticos controlam a distribuição de soluto, segundas fases dentro das regiões intercelulares ou interdendríticas, que determinam as propriedades finais. O comportamento mecânico e as características estruturais dos componentes de bateria têm papel importante no desempenho das baterias. O presente trabalho pretende contribuir para o entendimento do desenvolvimento microestrutural de ligas diluídas do sistema Pb-Sn (Pb-1,0%Sn e Pb-2,5%Sn) que possuem elevada importância para a indústria na fabricação de componentes de baterias automotivas e estacionárias. Os experimentos de solidificação realizados em dispositivo no qual o calor é extraído somente pelo sistema de resfriamento a água, localizado na base do conjunto lingote/lingoteira (solidificação ascendente). As variáveis térmicas de solidificação foram determinadas a partir do registro de temperaturas de termopares posicionados dentro da lingoteira em diferentes posições em relação à superfície refrigerada do lingote. Amostras das mencionadas ligas Pb-Sn foram utilizadas para analisar as influências das variáveis térmicas de solidificação e da concentração de soluto nas macro e microestruturas resultantes e na resistência mecânica. Foram determinados os limites de resistência à tração e alongamentos específicos em função do espaçamento celular e a influência da microestrutura no comportamento eletroquímico foi avaliada por intermédios dos ensaios de espectroscopia de impedância eletroquímica, extrapolação de Tafel, curvas de polarização e análise por circuito equivalente em solução eletrolítica de ácido sulfúrico. Observou-se que a resistência a corrosão diminui e o limite de resistência a tração aumenta com a diminuição do espaçamento celular. / Abstract: Lead-acid batteries manufacturers have modified the manufacturing processes and the chemical composition of alloys used in battery grids in order to decrease their weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion-resistance. The morphological microstructures characterized by cellular and dendritic arrays and its correspondents cellular and dendrite arm spacings control the solute distribution, second phases in the intercellular and interdendritic regions affecting the resulting properties. The mechanical behavior and microstructural characteristics of lead-acid battery components have an important role in the battery performance. The present work aims to contribute to the understanding of the microstructural development of dilute Pb-1,0 wt.%Sn and Pb-2.5 wt.%Sn alloys which are widely applied in the manufacturing of automobile and stationary lead-acid batteries. A water-cooled vertical upward unidirectional solidification system was used to obtain the samples. The experimental set-up was designed in such a way that the heat was extracted only through the water-cooled bottom, promoting upward directional solidification. Thermal readings were obtained by thermocouples positioned at different distances from the heat-extracting surface at the casting bottom. Pb-Sn alloy samples were used to analyze the effects of the thermal solidification variables and solute content on the resulting macro and microstructures and on the mechanical properties. The ultimate tensile strength and the elongation were determined as a function of the cellular arm spacing. The effect of the resulting microstructure on the electrochemical corrosion behavior was also analyzed based on electrochemical parameters, determined by Tafel plots, polarization curves and an equivalent circuit analysis after corrosion tests carried out in a sulphuric acid solution. It was observed that the corrosion resistance decreases and the ultimate tensile strength increases with decreasing cellular spacing. / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
47

An analysis of the performance of a South African stainless steel manufacturer in localising the demand for corrosion resistant steels within the Eastern Cape catalytic converter industry

Soiné, Robert Paul January 2004 (has links)
Commercial decisions are been made with respect to the competitive advantage of manufacturing catalytic converters in South Africa. This thesis identifies those factors relating to the sourcing of stainless steel and the impact it has of securing future business in a competitive environment. The catalytic converter industry requires the support of a stainless steel plant that provides high quality products at a competitive price, while keeping abreast with international developments.
48

Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Díaz, Jorge G. 12 1900 (has links)
Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles.
49

Laser Surface Alloying of Refractory Metals on Aluminum for Enhanced Corrosion Resistance: Experimental and Computational Approaches

Rajamure, Ravi Shanker 12 1900 (has links)
Aluminum (Al) and its alloys are widely used in various technological applications, mainly due to the excellent thermal conductivity, non-magnetic, ecofriendly, easy formability and good recyclability. However due to the inferior corrosion resistance its applications are hampered in various engineering sectors. Besides, the corrosion related failures such as leakage of gas from pipeline, catastrophic breakdown of bridges and fire accidents in processing plants further puts the human life in jeopardy. Within the United States over $ 400 billion dollars per year are spent over research to understand and prevent the corrosion related failures. Recently, the development of transition metal(TM) aluminides (AlxTMy, where, TM = Mo, W, Ta, Nb, Cr, Zr and V) has received the global attention mainly due to high strength at elevated temperatures, light-weight, excellent corrosion and wear resistance. In light of this, surface modification via laser surface alloying (LSA) is a promising engineering approach to mitigate the corrosion and wear problems. In the present study the attempts are made to study the Al-Mo, Al-W, Al-Nb, and Al-Ta systems as a potential corrosion resistant coatings on aluminum. The refractory metal (Mo, W, Nb, Ta) precursor deposit was spray coated separately on aluminum substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. Microstructural analysis was conducted using scanning electron microscopy and further X-ray diffractometry was carried out to evaluate the various phases evolved during laser surface alloying. Corrosion resistance of laser alloyed coatings were evaluated using open circuit potential, cyclic potentiodynamic polarization, electrochemical impedance spectroscopy measurements were performed in 0.6 M NaCl solution (pH:6.9±0.2, 23˚C). Open circuit potential measurements indicate the more stable (steady state) potential values over long periods after laser surface alloying. Cyclic polarization results indicated reduction in the corrosion current density, enhancement in the polarization resistance, and increase in coating/protective efficiency with increase in laser energy density compared to untreated aluminum. Electrochemical impedance spectroscopy measurements also indicated an increase in charge transfer resistance after laser surface alloying of refractory metals on aluminum. Additionally, first principle calculations of thermodynamic, electronic and elastic properties of intermetallics evolved during LSA were also thoroughly investigated to correlate the corrosion performance of intermetallic coatings with these properties. The present study indicates that novel Al-Mo, Al-W, Al-Nb, and Al-Ta intermetallics has a great potential for light weight structural applications with enhanced corrosion resistance.
50

Bioinspired & biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance

Rizvi, Hussain R. 05 1900 (has links)
Hierarchical arrangement of biological composites such as nacre and bone containing high filler (ceramic) content results in high strength and toughness of the natural material. In this study we mimic the design of layered bone microstructure and fabricate an optimal multifunctional bio-nanocomposite having strength, toughness and corrosion resistance. Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer was used as a substrate material with the reinforcement of LDH (Layered double hydroxide) as a nanofiller in different concentrations to achieve enhancement in mechanical properties as well as processing related thermostability. Corrosion resistance was increased by mimicking a layered structured which incorporated a tortuous diffusion path.

Page generated in 0.0832 seconds