• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compréhension des mécanismes physiopathologiques des malformations du développement cortical associées à des mutations dans les gènes KIF2A et NEDD4L / Understanding the pathophysiological mechanisms of malformations of cortical development associated with mutations in KIF2A and NEDD4L genes

Broix, Loïc 24 November 2016 (has links)
Les malformations du développement cortical (MDC) résultent d’altérations au niveau de différentes étapes de la corticogénèse telles que la prolifération, la migration et la différenciation neuronale et sont généralement associées à des épilepsies pharmaco-résistantes et à des déficiences intellectuelles sévères. Les causes génétiques des MDC restent encore inconnues dans de nombreux cas, nous avons donc réalisé le séquençage de l’exome entier de nombreux patients présentant des MDC et les analyses ont permis de mettre en évidence l’implication des gènes KIF2A et NEDD4L dans les MDC. Dans le cadre de ma thèse, nous proposons de focaliser sur les conséquences cellulaires et neurodéveloppementales résultant des mutations dans les gènes KIF2A et NEDD4L retrouvées chez les patients atteints de MDC. KIF2A code pour une kinésine-13 qui a pour fonction de réguler la dynamique des microtubules (MT) via son activité MT dépolymérase ATP-dépendante aux niveaux des extrémités des MT. L’approche basée sur la technique d’électroporation in utero nous a permis de mettre en évidence le rôle crucial joué par KIF2A dans la régulation de la neurogénèse, la migration neuronale et le positionnement des neurones dans le cortex. En particulier, nos données révèlent que l’expression des mutants KIF2A responsables de MDC entraîne une augmentation du nombre de cellules à l’état de progéniteurs qui est conséquente à un allongement du temps passé dans le cycle cellulaire. Nos premières données cellulaires et au cours du développement montrent que l’expression des mutants KIF2A induit des altérations dans l’intégrité du fuseau mitotique, dans la progression mitotique et également une localisation anormale de KIF2A au niveau du cil primaire. NEDD4L code pour une E3 ubiquitine ligase qui joue un rôle dans l’ubiquitination de nombreux substrats permettant la régulation de leur dégradation et de leur localisation subcellulaire. Dans un premier temps, nos données cellulaires ont montré que les mutants associées à des MDC ont une sensibilité accrue pour la dégradation par le protéasome. De plus, l’approche d’électroporation in utero a permis de montrer que l’expression des mutants NEDD4L ainsi qu’un excès de NEDD4L WT dérégulent la neurogenèse, le positionnement des neurones et le processus de translocation terminal. Des études complémentaires, incluant le traitement à la rapamycine, ont révélé qu’un excès de NEDD4L WT mène à la dérégulation des voies de signalisations mTORC1 et Dab1 tandis que l’expression des mutants est associée à une dérégulation des voies mTORC1 et Akt. L’ensemble de ces résultats renforce donc dans un premier temps l’importance des protéines liées aux MT dans le développement cortical en décrivant le rôle crucial de la kinésine KIF2A dans des mécanismes tels que la dynamique de migration neuronale et dans la régulation du cycle cellulaire des progéniteurs neuronaux. D’autre part, nous fournissons également de nouvelles données permettant de mieux comprendre le rôle critique de NEDD4L dans la régulation des voies mTOR et de leurs contributions dans le développement cortical. / Malformations of cortical development (MCD) result from alterations in different stages of corticogenesis such as proliferation, migration and neuronal differentiation, and are generally associated with drug-resistant epilepsy and severe intellectual disabilities. The genetics causes of MCD remain largely unknown, we have thus performed the whole-exome sequencing of many patients with MCD and reported the identification of multiple pathogenic missense mutations in KIF2A and NEDD4L genes. Within the frame of my thesis project, we propose to focus on the cellular and neurodevelopmental consequences resulting from KIF2A and NEDD4L mutations shown to be involved in MCD. KIF2A is a member of the kinesin-13 family, which rather than regulating cargos transport along microtubules (MT), regulates MT dynamics by depolymerizing MTs. The in utero electroporation approach allowed us to highlight the crucial role of KIF2A in the regulation neurogenesis, neuronal migration and the neuronal positioning in the cortex. Particularly, our data show that the expression of the KIF2A mutants involved in MDC lead to an increase in the number of cells in proliferative state which is a consequence of a prolonged time spent in the cell cycle. Our first cellular data and during development show that the expression of pathogenic KIF2A mutations induce alterations in the mitotic spindle integrity, in the mitotic progression and also an abnormal localization of KIF2A in the primary cilium. NEDD4L encodes a member of the NEDD4 family of HECT-type E3 ubiquitin ligases known to regulate the turnover and function of a number of proteins involved in fundamental cellular pathways and processes. Firstly, cellular and expression data showed sensitivity of MCD-associated mutants to proteasome degradation. Moreover, the in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while MCD-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these results reinforce the importance of MT-related proteins in cortical development describing the crucial role of KIF2A kinesin in mechanisms such as neuronal migration dynamics and neuronal progenitor’s cell cycle regulation. On the other hand, we also provide new data to better understand the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.
2

Lineage-specific manipulation of subventricular zone germinal activity for neonatal cortical repair / Étude de l'implication des cellules souches de la zone sous-ventriculaire dans la récupération post-hypoxie néonatale

Angonin, Diane 19 September 2017 (has links)
L'hypoxie périnatale entraîne une dégénérescence et un délai de maturation des oligodendrocytes et des neurones corticaux du cortex cerebral. Mon projet de thèse a d'abord consisté à étudier la contribution des cellules souche neurales de la zone sous-ventriculaire dorsale (dSVZ) à la tentative de régénération spontanée observée après la lésion. Dans un second temps, j'ai étudié la capacité de ces cellules souches à être manipulée en utilisant une approche pharmacologique.Mes résultats mettent en évidence une réponse spontanée et dynamique de la dSVZ qui produit des neurones et des oligodendrocytes corticaux en réponse à l'hypoxie. L'administration par voie intranasale d'un inhibiteur de Gsk3b, qui active la voie Wnt/b-caténine, petite molécule identifiée à l'aide d'une étude bio-informatique comme « dorsalisante », juste après la période d'hypoxie, potentialise cette réponse spontanée. En effet, mes résultats montrent que certains neurones corticaux issus de la dSVZ survivent avec le traitement alors qu'aucun ne semblent persister après 1 mois suivant l'hypoxie. De plus, le traitement accélère la maturation des oligodendrocytes corticaux et augmentent leur production et intégration à long terme. Enfin, le traitement a un effet à long terme sur les cellules souches de la dSVZ en augmentant la proportion de ces cellules qui sont actives. Pour conclure, la dSVZ participe à la récupération corticale spontanée qui suit l'hypoxie périnatale et cette réponse peut être potentialisée par l'administration d'une petite molécule identifiée par notre analyse bio-informatique, un inhibiteur de GSK3b / Perinatal hypoxia leads to degeneration and delayed maturation of oligodendrocytes and cortical glutamatergic neurons. My PhD project consists in assessing the contribution of neural stem cells (NSCs) of the dorsal subventricular zone (dSVZ, i.e. the largest germinal zone of the postnatal brain) to the spontaneous regenerative attempt observed following such injury as well as its amenability to pharmacological manipulation.The results I have obtained highlight a dynamic and lineage-specific response of NSCs of the dSVZ to hypoxia that results in de novo oligodendrogenesis and cortical neurogenesis. Newborn cortical neurons express appropriate cortical layer markers, supporting their appropriate specification. A pharmacogenomics analysis allowed us to identify small molecules boosting specificly dSVZ NSCs. Pharmacological activation of Wnt/ß-catenin signalling by intranasal GSK3ß inhibitor administration during the recovery period following hypoxia indeed potentiates dorsal SVZ participation to post-hypoxia repair. Gsk3b inhibitor CHIR99021 seems to promote survival of cortical neurons from the dSVZ produced in response to hypoxia. More interestingly, CHIR99021 promotes oligodendrocyte maturation and long term integration in the cortex as well as a long term increased activity of dSVZ NSCs.Altogether, my results highlighted a dynamic and lineage-specific response of dorsal NSCs cells to hypoxia and identify the early postnatal dorsal SVZ as a malleable source of stem cells for cortical repair following trauma that occur early in life. CHIR99021 (a Gsk3b inhibitor) intranasal administration promotes this cortical cellular repair with a long term activation of dSVZ NSCs which increased their production of oligodendrocytes migrating to the cortex and a short term improvement of their maturation, and might allow the integration of cortical neurons they produce

Page generated in 0.073 seconds