• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 58
  • 58
  • 58
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Observational signatures of the first stars from the near infrared background to Lyman-[alpha] emitters /

Fernandez, Elizabeth Rose. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
52

Techniques for the Analysis and Understanding of Cosmic Evolution

January 2018 (has links)
abstract: The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation. The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB. 21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum. This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging. / Dissertation/Thesis / Doctoral Dissertation Physics 2018
53

"Linhas de Estrutura Fina em Absorção no Espectro de QSOs" / Fine-structure absorption lines in QSO spectra.

Alex Ignácio da Silva 21 May 1999 (has links)
Neste trabalho realizamos cálculos teóricos das razões de povoamento dos níveis de estrutura fina do C0, C+ e Si+ considerando em detalhes os efeitos dos diversos mecanismos de excitação: colisões, fluorescência e a radiação cósmica de fundo. Empregamos dados atômicos recentes coletados na literatura na resolução das equações de equilíbrio estatístico pertinentes. A confrontação das razões de povoamento calculadas com as razões de densidades de coluna observadas disponíveis na literatura nos permite obter informações acerca das condições físicas (densidades volumétricas, intensidade de um campo de radiação UV presente, temperatura da radiação cósmica de fundo) e propriedades (dimensão característica e massa) dos sistemas damped Lyman a e Lyman Limit vistos em absorção no espectro de QSOs. Como um aparte, e por sua relação com o tema do trabalho, também investigamos a lei de temperatura da radiação cósmica de fundo. / In this work we perform theoretical calculations of the population ratios of fine structure levels of C0, C+ and Si+ considering in detail the effect of the various excitation mechanisms: collisions, fluorescence and the cosmic background radiation. We employ recent atomic data, gathered in the literature, to solve the related statistical equilibrium equations. The comparison of the calculated population ratios with the observed column densities ratios available in the literature allows us to obtain informations regarding the physical conditions (volume densities, intensity of a UV radiation field present, temperature of the cosmic background radiation) and properties (characteristic size and mass) of damped Lyman a and Lyman Limit systems seen in absorption in spectra of QSOs. We also investigate the temperature law of the cosmic background radiation, which bears a tight relationship with this work.
54

Measurements of diffuse galactic emission at 5 GHz with C-BASS

Jew, Luke January 2017 (has links)
The C-Band All-Sky Survey (C-BASS) is a project to produce an all-sky map in intensity and polarization at a central frequency of 5 GHz with 1 GHz bandwidth and approximately 1 degree resolution. The central frequency is low enough for the map to be dominated by synchrotron and free-free emission but high enough so that Faraday rotation and depolarization are small across most of the sky. The C-BASS map will enable a more accurate removal of contaminating foregrounds from measurements of the cosmic microwave background, particularly in polarization where the B-mode signal from inflation is likely to be orders of magnitude weaker than the diffuse Galactic foreground emission. To produce an all-sky map from the ground requires two telescopes, one in the northern and one in the southern hemisphere. This thesis focuses on analysis of C-BASS North data. The noise properties of time-ordered data are characterised by fitting a noise model to periodograms. Using simulations, the errors introduced into the C-BASS maps by a destriping mapmaker are quantified and we reduce the signal error by masking the brightest pixels during baseline offset estimation. Jackknife tests are used to test the C-BASS data for systematics and to test the accuracy of the sensitivity maps. In total intensity, the spectral index of diffuse Galactic emission between 5 GHz and 408 MHz is measured using an extended T-T plot method and the results are compared to simulations. The spectral index of polarized diffuse Galactic emission between 5 GHz and 30 GHz is estimated in 55 arcminute pixels, modelling the polarized intensity as a Rician random variable.
55

Development and assessment of a blind component separation method for cosmological parameter estimation / Développement et évaluation d'une méthode de séparation aveugle de composantes pour l'estimation des paramètres cosmologiques

Umiltà, Caterina 15 September 2017 (has links)
Le rayonnement fossile, ou CMB, est un sujet d’étude clé pour la cosmologie car il indique l’état de l’univers à une époque primordiale. Le CMB est observable dans le ciel dans la bande de fréquences des micro-ondes. Cependant, il existe des processus astrophysiques, les avant-plans, qui émettent dans les micro-ondes, et rendent indispensable le traitement des données avec des méthodes de séparation de composantes. J'utilisé la méthode aveugle SMICA pour obtenir une estimation directe du spectre de puissance angulaire du CMB. La détermination des petites échelles de ce spectre est limité par les avant-plans comme les galaxies lointaines, et par le biais du bruit. Dans cette analyse, ces deux limitations sont abordées. En ajoutant des hypothèses sur la physique des galaxies lointaines, il est possible de guider l’algorithme pour estimer leur loi d'émission. Un spectre de puissance angulaire obtenu d'une carte du ciel a un biais dû au bruit à petites échelles. Toutefois, les spectres obtenus en croisant différentes cartes n'ont pas ce biais. J'ai donc adapté la méthode SMICA pour qu'elle n'utilise que ces derniers, diminuant l'incertitude due au bruit dans l'estimation du CMB. Cette méthode a été étudiée sur des nombreuses simulations et sur les données Planck 2015, afin d'estimer des paramètres cosmologiques. Les résultats montrent que la contamination résiduelle des avant-plans présente dans le spectre CMB, même si fortement réduite, peut introduire des biais dans l'estimation des paramètres si la forme des résiduels n'est pas bien connue. Dans cette thèse, je montre les résultats obtenus en étudiant un modèle de gravité modifiée. / The Planck satellite observed the whole sky at various frequencies in the microwave range. These data are of high value to cosmology, since they help understanding the primordial universe through the observation of the cosmic microwave background (CMB) signal. To extract the CMB information, astrophysical foreground emissions need to be removed via component separation techniques. In this work I use the blind component separation method SMICA to estimate the CMB angular power spectrum with the aim of using it for the estimation of cosmological parameters. In order to do so, small scales limitations as the residual contamination of unresolved point sources and the noise need to be addressed. In particular, the point sources are modelled as two independent populations with a flat angular power spectrum: by adding this information, the SMICA method is able to recover the joint emission law of point sources. Auto-spectra deriving from one sky map have a noise bias at small scales, while cross-spectra show no such bias. This is particularly true in the case of cross-spectra between data-splits, corresponding to sky maps with the same astrophysical content but different noise properties. I thus adapt SMICA to use data-split cross-spectra only. The obtained CMB spectra from simulations and Planck 2015 data are used to estimate cosmological parameters. Results show that this estimation can be biased if the shape of the (weak) foreground residuals in the angular power spectrum is not well known. In the end, I also present results of the study of a Modified Gravity model called Induced Gravity.
56

Lorentz-violating dark matter

Mondragon, Antonio Richard 15 May 2009 (has links)
Observations from the 1930s until the present have established the existence of dark matter with an abundance that is much larger than that of luminous matter. Because none of the known particles of nature have the correct properties to be identified as the dark matter, various exotic candidates have been proposed. The neutralino of supersymmetric theories is the most promising example. Such cold dark matter candidates, however, lead to a conflict between the standard simulations of the evolution of cosmic structure and observations. Simulations predict excessive structure formation on small scales, including density cusps at the centers of galaxies, that is not observed. This conflict still persists in early 2007, and it has not yet been convincingly resolved by attempted explanations that invoke astrophysical phenomena, which would destroy or broaden all small scale structure. We have investigated another candidate that is perhaps more exotic: Lorentz-violating dark matter, which was originally motivated by an unconventional fundamental theory, but which in this dissertation is defined as matter which has a nonzero minimum velocity. Furthermore, the present investigation evolved into the broader goal of exploring the properties of Lorentz-violating matter and the astrophysical consequences – a subject which to our knowledge has not been previously studied. Our preliminary investigations indicated that this form of matter might have less tendency to form small-scale structure. These preliminary calculations certainly established that Lorentz-violating matter which always moves at an appreciable fraction of the speed of light will bind less strongly. However, the much more thorough set of studies reported here lead to the conclusion that, although the binding energy is reduced, the small-scale structure problem is not solved by Lorentz-violating dark matter. On the other hand, when we compare the predictions of Lorentz-violating dynamics with those of classical special relativity and general relativity, we find that differences might be observable in the orbital motions of galaxies in a cluster. For example, galaxies – which are composed almost entirely of dark matter – observed to have enlarged orbits about the cluster center of mass may be an indication of Lorentz violation.
57

The kinetic Sunyaev-Zel’dovich effect as a probe of the physics of cosmic reionization : the effect of self-regulated reionization

Park, Hyunbae 16 January 2015 (has links)
We calculate the angular power spectrum of the cosmic microwave background temperature fluctuations induced by the kinetic Sunyaev-Zel'dovich (kSZ) effect from the epoch of reionization (EOR). We use detailed N-body+radiative-transfer simulations to follow inhomogeneous reionization of the intergalactic medium. For the first time, we take into account the "self-regulation" of reionization: star formation in low-mass dwarf galaxies or minihalos is suppressed if these halos form in the regions that were already ionized or Lyman-Werner dissociated. Some previous work suggested that the amplitude of the kSZ power spectrum from the EOR can be described by a two-parameter family: the epoch of half-ionization and the duration of reionization. However, we argue that this picture applies only to simple forms of the reionization history which are roughly symmetric about the half-ionization epoch. In self-regulated reionization, the universe begins to be ionized early, maintains a low level of ionization for an extended period, and then finishes reionization as soon as high-mass atomically cooling halos dominate. While inclusion of self-regulation affects the amplitude of the kSZ power spectrum only modestly (~10%), it can change the duration of reionization by a factor of more than two. We conclude that the simple two-parameter family does not capture the effect of a physical, yet complex, reionization history caused by self-regulation. When added to the post-reionization kSZ contribution, our prediction for the total kSZ power spectrum is below the current upper bound from the South Pole Telescope. Therefore, the current upper bound on the kSZ effect from the EOR is consistent with our understanding of the physics of reionization. / text
58

ASSINATURAS DA VIOLAÃÃO DA SIMETRIA DE LORENTZ NA RADIAÃÃO CÃSMICA DE FUNDO / SIGNATURES OF LORENTZ OF SYMMETRY VIOLATION IN BACKGROUND COSMIC RADIATION

Arilo Pinheiro AraÃjo 02 August 2016 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho investigaremos a relaÃÃo da violaÃÃo da simetria de Lorentz com a anisotropia da radiaÃÃo cÃsmica de fundo. Exporemos o desenrolar da compreensÃo do Big Bang e tambÃm da radiaÃÃo em questÃo e mostraremos o seu significado e a sua natureza. Mostraremos as definiÃÃes de simetria de Lorentz e de violaÃÃo da simetria de Lorentz. Usaremos o modelo Bumblebee para lidar com os termos que violam essa simetria e mostraremos quais termos serÃo utilizados. Desenvolveremos uma equaÃÃo de Einstein modificada atravÃs da variaÃÃo, com respeito à mÃtrica, da aÃÃo de Einstein-Hilbert com os termos de Bumblebee adicionados, pois sÃo os termos que violam a simetria de Lorentz. Usaremos essa equaÃÃo desenvolvida para fazer uma anÃlise perturbativa. Usaremos a mÃtrica de Friedmann-LemaÃtre-Robertson-Walker, por ser uma mÃtrica isotrÃpica, e introduziremos uma perturbaÃÃo em cada direÃÃo da parte espacial da mÃtrica em questÃo para tornÃ-la anisotrÃpica. Por fim, apresentaremos um conjunto de quatro equaÃÃes diferenciais lineares acopladas (com as perturbaÃÃes como variÃveis) que relacionam as perturbaÃÃes propostas com o campo de Bumblebee. / Neste trabalho investigaremos a relaÃÃo da violaÃÃo da simetria de Lorentz com a anisotropia da radiaÃÃo cÃsmica de fundo. Exporemos o desenrolar da compreensÃo do Big Bang e tambÃm da radiaÃÃo em questÃo e mostraremos o seu significado e a sua natureza. Mostraremos as definiÃÃes de simetria de Lorentz e de violaÃÃo da simetria de Lorentz. Usaremos o modelo Bumblebee para lidar com os termos que violam essa simetria e mostraremos quais termos serÃo utilizados. Desenvolveremos uma equaÃÃo de Einstein modificada atravÃs da variaÃÃo, com respeito à mÃtrica, da aÃÃo de Einstein-Hilbert com os termos de Bumblebee adicionados, pois sÃo os termos que violam a simetria de Lorentz. Usaremos essa equaÃÃo desenvolvida para fazer uma anÃlise perturbativa. Usaremos a mÃtrica de Friedmann-LemaÃtre-Robertson-Walker, por ser uma mÃtrica isotrÃpica, e introduziremos uma perturbaÃÃo em cada direÃÃo da parte espacial da mÃtrica em questÃo para tornÃ-la anisotrÃpica. Por fim, apresentaremos um conjunto de quatro equaÃÃes diferenciais lineares acopladas (com as perturbaÃÃes como variÃveis) que relacionam as perturbaÃÃes propostas com o campo de Bumblebee.

Page generated in 0.1329 seconds