• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 493
  • 91
  • 61
  • 47
  • 21
  • 14
  • 13
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • Tagged with
  • 943
  • 387
  • 183
  • 155
  • 152
  • 134
  • 114
  • 99
  • 88
  • 85
  • 84
  • 69
  • 69
  • 66
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Cosmology with CMB and large scale structure

Ma, Yin-Zhe January 2011 (has links)
Cosmology has become a precision science due to a wealth of new precise data from various astronomical observations. It is therefore important, from a methodological point of view, to develop new statistical and numerical tools to study the Cosmic Microwave Background (CMB) radiation and Large Scale Structure (LSS), in order to test different models of the Universe. This is the main aim of this thesis. The standard inflationary -dominated Cold Dark Matter ( CDM) model is based on the premise that the Universe is statistically isotropic and homogeneous. This premise needs to be rigorously tested observationally. We study the angular correlation function C(θ) of the CMB sky using the WMAP 5-year data, and find that the low-multipoles can be reconstructed from the data outside the sky cut. We apply a Bayesian analysis and find that S1/2 statistic (S1/2 = R [C(θ)]2d cos θ, used by various investigators as a measure of correlations at large angular scales) cannot exclude the predictions of the CDM model. We clarify some issues concerning estimation of correlations on large angular scales and their interpretation. To test for deviation from statistical isotropy, we develop a quadratic maximum likelihood estimator which we apply to simulated Planck maps. We show that the temperature maps from Planck mission should be able to constrain the amplitude of any spherical multipole of a scaleinvariant quadrupole asymmetry at the 1% level (2σ). In addition, polarization maps are also precise enough to provide complimentary constraints. We also develop a method to search for the direction of asymmetry, if any, in Planck maps. B-mode polarisation of the CMB provides another important test of models of the early Universe. Different classes of models, such as single-field inflation, loop quantum cosmology and cosmic strings give speculative but testable predictions. We find that the current ground-based experiments such as BICEP, already provided fairly tight constraints on these models. We investigate how these constraints might be improved with future observations (e.g. Planck, Spider). In addition to the CMB related research, this thesis investigates how peculiar velocity fields can be used to constrain theoretical models of LSS. It has been argued that there are large bulk flows on scales of & 50 Mpc/h. If true, these results are in tension with the predictions of the CDM model. We investigate a possible explanation for this result: the unsubtracted intrinsic dipole on the CMB sky may source this apparent flow, leading to the illusion of the tilted Universe. Under the assumption of a superhorizon isocurvature fluctuation, the constraints on the tilted velocity require that inflation lasts at least 6 e-folds longer (at the 95% confidence interval) than that required to solve the horizon problem. Finally, we investigate Cosmic Mach Number (CMN), which quantifies the ratio between the mean velocity and the velocity dispersion of galaxies. We find that CMN is highly sensitive to the growth of structure on scales (10, 150) Mpc/h, and can therefore be used to test modified gravity models and neutrino masses. With future CMN data, it should be possible to constrain the growth factor of linear perturbation, as well as the sum of the neutrino mass to high accuracy.
402

Etude en laboratoire de grains extraterrestres et de leurs analogues de synthèse / Laboratory analyses of extraterrestrial materials and of their synthetic analogs

Merouane, Sihane 11 October 2013 (has links)
L’étude en laboratoire de matériaux extraterrestres provenant d’objets ayant peu ou pas évolué depuis leur formation il y a environ 4.6 milliards d’années, peut améliorer notre connaissance sur les débuts de notre système planétaire. Par ailleurs, la simulation en laboratoire de certains processus que ces matériaux sont susceptibles de subir au cours de leur histoire apporte également de précieuses informations pour l’interprétation des données issues des observations astronomiques ainsi que pour la compréhension de l’évolution des solides du Milieu Interstellaire jusqu’à leur incorporation dans des objets planétaires, objets incluant aussi toutes sortes de débris tels que les astéroÏdes, les comètes et toutes sortes de poussières accessibles à la collecte et/ou à l’observation.Au cours de cette thèse, l’analyse des matériaux organiques ainsi que des matériaux silicatés, jusqu’alors peu étudiés conjointement, dans les poussières stratosphériques d’origine cosmique, révèle une corrélation entre la minéralogie des grains et la longueur des chaînes carbonées. Ce lien ne semble pas le fruit de processus à la surface des corps parents des grains mais semble plutôt tracer des processus pré-accrétionnels. La conservation de composants peu altérés sur les corps parents dans les matériaux extraterrestres est encore une fois confirmée par la découverte, au cours de cette thèse, d’inclusions dans la météorite carbonée « Paris » dont les spectres infrarouges sont très similaires à ceux des composés carbonés observés dans le Milieu Interstellaire. L’étude de grains cométaires issus de la mission spatiale Stardust a montré, contrairement à l’idée que les comètes soient composées uniquement de matériaux primitifs puisque conservés dans un réservoir froid, que celles-ci contiennent aussi un certain nombre de matériaux formés à haute température, confirmant alors de précédentes analyses d’échantillons de Stardust et impliquant des échanges de matériaux à grande échelle radiale dans le jeune Système solaire.La deuxième partie de ce travail, consacrée à l’étude d’analogues de matière extraterrestre, porte sur le rôle qu’ont pu jouer les matériaux à partir desquels les planètes telluriques se sont formées dans l’apport de l’eau sur la Terre dans le cadre du scénario dit de « wet accretion ». Les expériences effectuées au cours de cette thèse visant à simuler les interactions entre silicates et vapeur d’eau ont montré que ces matériaux permettent de stocker d’importantes quantités d’eau à leur surface par adsorption des molécules de la phase gazeuse. / Laboratory analyses performed on extraterrestrial materials originating from primitive bodies of our Solar System, that are bodies known to have suffered low alteration since their formation 4.6 billion years ago, can improve our knowledge on processes that have occurred in the early phase of our planetary system. Furthermore, laboratory simulations of some processes that these materials are likely to suffer during their life cycle also bring precious indications for interpreting observational data as well as for understanding the evolution of solids from the Interstellar Medium to their incorporation into planetary bodies, these latter including asteroids, comets and all kinds of dust that may be observed and/or collected back to Earth.During this thesis, the analysis of silicate as well as organic materials, which have not been much studied jointly so far, in stratospheric particles of cosmic origin, reveals a correlation between the mineralogy of the grains and the lengths of the chains of their carbonaceous component. This link does not seem to be due to parent body processing but rather to trace pre-accretionnal processes. The preservation of pristine components in extraterrestrial materials slightly altered on their parent bodies is again confirmed by the discovery in this work, of inclusions in the “Paris” carbonaceous chondrite whose infrared spectra are similar to the interstellar carbonaceous species. The study of cometary grains from the Stardust space mission showed, unlike the common idea that comets should be composed only of primitive materials since they reside in a cold reservoir, that comets do also contain a number of materials formed at high temperature, thus confirming results from previous studies of Stardust samples and implying large-scale radial mixing of materials in the young Solar system disk.The second part of my work, dedicated to experiments on primitive extraterrestrial amorphous silicates analogs, is aimed to study the role that materials from which Earth has accreted could have played in its water budget in the frame of the “wet accretion” scenario. The experiments performed along this thesis simulating interactions between silicates and water vapor, showed that silicates allow the storage of large quantities of water by adsorption onto their surface of molecules directly from the gas phase.
403

GLAST CsI(Tl) Crystals

Bergenius, Sara January 2004 (has links)
No description available.
404

Measurements of Cosmic Ray Antiprotons with PAMELA

Wu, Juan January 2010 (has links)
QC 20100420
405

On the origin and formation process of glass with embedded metal and sulfides (GEMS) inferred from 3D observation and reproduction experiment / 三次元観察と再現実験から迫る彗星塵微粒子GEMSの起源と形成過程

Matsuno, Junya 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18805号 / 理博第4063号 / 新制||理||1584(附属図書館) / 31756 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 土`山 明, 准教授 三宅 亮, 准教授 伊藤 正一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
406

Cosmic-Ray Emission as a Window into Extragalactic Environments: Starburst Galaxies & Blazars

Buckman, Benjamin Jerome January 2020 (has links)
No description available.
407

An Investigation of the Effectiveness of Polymer Based Materials for Radiation Shielding of Flight Vehicles

Driouche, Bouteina 11 August 2017 (has links)
The Earth’s upper atmosphere is suffused by radiation caused primarily by a bombardment of Cosmic Rays, as a result of which it is hazardous for human beings as well as sensitive electronic equipment on board flight vehicles. A series of ground based as well as airborne experiments were performed using Polylactic Acid (PLA), Acrylonitrile-Butadiene-Styrene (ABS) and High Impact Polystyrene (HIPS), in order to investigate the applicability of polymers that can meet today’s needs for lightweight, multifunctional, and cost efficiency in radiation shielding of electronic equipment. It was found that PLA at 8 mm thickness has an effectiveness of 66% against gamma radiation (i.e., it blocked 66% of the gamma radiation). Therefore, it was decided to proceed with a high altitude balloon experiment with an 8 mm thickness of PLA. The shield was demonstrated to be reasonably effective in attenuating radiation from cosmic rays.
408

Direction measurement capabilities of the LEDA cosmic ray detector

Bultena, Sandra Lyn January 1988 (has links)
No description available.
409

The APEX-SZ experiment : observations of the Sunyaev Zel'dovich effect

Kennedy, James, 1983- January 2008 (has links)
No description available.
410

Non-thermal Particle Acceleration and Emission from Relativistic Jets

Hao Zhang (15315109) 19 April 2023 (has links)
<p>Astrophysical jets are collimated streams of magnetized plasma launched from compact objects, such as neutron stars or black holes. These jets, powered by the accretion of surrounding gas onto the compact object, can accelerate particles to extreme energies and produce powerful radiation.</p> <p><br></p> <p>In this report, I investigate energy dissipation and particle acceleration in two key regions in jets: (i) external shocks which form where jets interact with ambient gas and (ii) internally in the jet where particles are likely to be energized through the process of magnetic reconnection.</p> <p><br></p> <p>First, I explore inverse Compton scatterings of electrons accelerated at the external shock as a candidate for the high energy emissions from gamma-ray burst afterglows. I consider two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton) and photon fields external to the shock (external Compton) from the star-forming region in the host galaxy. I develop an analytical model to predict the high-energy spectra from these blasts and reproduce the observed spectra and lightcurves of GRB~190114C. The model implies that inverse Compton can dominate the sub-TeV/TeV emission in this event.</p> <p><br></p> <p>Second, I study the particle acceleration mechanism of magnetic reconnection internally in astrophysical jets. I employ particle-in-cell (PIC) simulations of 3D relativistic magnetic reconnection. My analysis reveals a novel acceleration mechanism that only operates in 3D that results in faster particle acceleration. Unlike in 2D simulations where particles are trapped in the reconnected plasma and stop being accelerated, a fraction of particles in 3D can escape from this region (along the third direction) and be further accelerated. The escaped particles are characterized by a harder energy spectrum with a higher cutoff compared to those found in previous studies. Based on the PIC simulation findings, I build an analytical model for the particle kinetics, which divides particles into two groups --- one undergoing fast energization in the reconnection upstream region and the other residing in the reconnected plasma without energy change. The model predicts a power-law spectra for both groups of particles. PIC simulations reveal a universal magnetization-independent spectra with $dN/d\gamma\propto \gamma^{-2}$ for the overall particle population. The results demonstrate that relativistic reconnection in jets may be a promising mechanism for generating Ultra-High-energy Cosmic Rays. </p>

Page generated in 0.0244 seconds