• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enumerabilidade e Não Enumerabilidade de conjuntos: uma abordagem para o Ensino Básico

Moraes Júnior, Rogério Jacinto de 15 May 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-08-27T12:52:40Z No. of bitstreams: 2 Dissertação - Rogério J de M Júnior.pdf: 1412276 bytes, checksum: 362c58043c52c9e05db80b80055fe0f2 (MD5) Ficha.pdf: 6202 bytes, checksum: 7bc34b7b59769c34edf90b86a7983117 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-08-28T20:05:14Z (GMT) No. of bitstreams: 2 Dissertação - Rogério J de M Júnior.pdf: 1412276 bytes, checksum: 362c58043c52c9e05db80b80055fe0f2 (MD5) Ficha.pdf: 6202 bytes, checksum: 7bc34b7b59769c34edf90b86a7983117 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-08-28T20:24:20Z (GMT) No. of bitstreams: 2 Dissertação - Rogério J de M Júnior.pdf: 1412276 bytes, checksum: 362c58043c52c9e05db80b80055fe0f2 (MD5) Ficha.pdf: 6202 bytes, checksum: 7bc34b7b59769c34edf90b86a7983117 (MD5) / Made available in DSpace on 2015-08-28T20:24:20Z (GMT). No. of bitstreams: 2 Dissertação - Rogério J de M Júnior.pdf: 1412276 bytes, checksum: 362c58043c52c9e05db80b80055fe0f2 (MD5) Ficha.pdf: 6202 bytes, checksum: 7bc34b7b59769c34edf90b86a7983117 (MD5) Previous issue date: 2015-05-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this dissertation we discuss briefly some issues quickly treated during the undergraduate course such as countable and uncountable sets, cardinality and other related subjects. We will present a brief historical review of the facts that gave rise to these problems, as well as people who have developed knowledge on these issues. The purpose of this report is succinctly present a direction to the Basic Education teachers for their classes, giving the opportunity to teachers to have more confidence when working with numerical sets and functions on these sets. It will also be used as a motivational element to the theoretical approach, or this associated with the problems that gave rise to such issues, both for teachers, and for students and scholars interested, because these are curious and intriguing subjects for those which enjoy studying mathematics of such subjects that are, of some kind, advanced or abstract. Among others, we can assign the comparison of cardinality of infinite sets, demonstrating that sets of racional numbers and the algebraic numbers are countable, and the real numbers and the transcendental numbers are uncountable, and besides, we show the cardinality of other interesting sets that are of great value to research in modern mathematics. Thus we think we are contributing to the improvement of teachers and students of Basic Education. / Neste trabalho abordaremos alguns assuntos tratados brevemente durante o curso de graduação tais como enumerabilidade e não enumerabilidade de conjuntos, cardinalidade e outros assuntos correlatos. Apresentaremos um pequeno aparato histórico que deram origem a esses problemas, assim como as pessoas que lançaram conhecimento sobre tais temas. O objetivo é apresentar sucintamente aos professores do ensino básico suporte para as aulas, dando a oportunidade do professor ter mais segurança quando trabalhar com conjuntos numéricos. Também servirá como elemento motivacional tanto para professores como para os alunos interessados, pois trata de assuntos curiosos e atiçadores para quem gosta de estudar matemática, como comparar a cardinalidade de conjuntos infinitos, a infinidade de números transcendentes e sua dificuldade de determiná-los e outros assuntos que são de grande riqueza de pesquisa na matemática moderna. Dessa forma pensamos estar contribuindo para o aperfeiçoamento de professores e alunos do ensino básico.

Page generated in 0.0705 seconds