Spelling suggestions: "subject:"counting principle"" "subject:"counting aprinciple""
1 |
Princípio fundamental da contagem: conhecimentos de professores de matemática sobre seu uso na resolução de situações combinatóriasLIMA, Ana Paula Barbosa de 15 February 1925 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-05-17T19:18:31Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
ANA PAULA LIMA_DISSERTAÇÃO_VERSÃO FINAL.pdf: 3025939 bytes, checksum: 3cb2a6d555eaee3f9ae8cdf088962636 (MD5) / Made available in DSpace on 2017-05-17T19:18:31Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
ANA PAULA LIMA_DISSERTAÇÃO_VERSÃO FINAL.pdf: 3025939 bytes, checksum: 3cb2a6d555eaee3f9ae8cdf088962636 (MD5)
Previous issue date: 25-02-15 / CAPES / No estudo propôs-se investigar os conhecimentos de professores da Educação Básica sobre
como o Princípio Fundamental da Contagem (PFC), também conhecido como princípio
multiplicativo, pode ser usado na resolução de variados problemas combinatórios e na
construção das fórmulas da Análise Combinatória. Pesquisas anteriores evidenciam a
importância deste princípio no ensino de Combinatória e como o mesmo facilita a resolução
dos diferentes tipos de situações combinatórias. Foram realizados dois estudos, um com a
finalidade de saber se professores e estudantes reconhecem o PFC em situações
combinatórias; e o outro estudo tinha como objetivo investigar conhecimentos de professores
de Matemática sobre a resolução e o ensino de problemas combinatórios com o uso do PFC.
O primeiro estudo envolveu um teste de múltipla escolha e justificativas, de dados coletados
junto a professores dos anos finais do Ensino Fundamental, professores do Ensino Médio e
alunos deste último nível da Educação Básica. Para o segundo estudo, foi realizada uma
entrevista semiestruturada com professores, baseada nos tipos de conhecimento sugeridos por
Ball, Thames e Phelps (2008) (conhecimento comum do conteúdo, conhecimento
especializado do conteúdo, conhecimento horizontal do conteúdo, conhecimento do conteúdo
e alunos, conhecimento do conteúdo e ensino e conhecimento do conteúdo e currículo). Neste
segundo estudo a coleta de dados foi realizada por meio de protocolos com situações
combinatórias resolvidas por alunos. Estas situações envolveram os quatro tipos de problemas
combinatórios (produto cartesiano, arranjo, permutação e combinação). A partir dos
conhecimentos propostos por Ball, Thames e Phelps (2008), foram criadas seis categorias
com foco no PFC para a análise dos conhecimentos dos professores sobre o uso do PFC na
resolução de situações combinatórias: conhecimento comum do PFC, conhecimento
especializado do PFC, conhecimento horizontal do PFC, conhecimento do PFC e alunos,
conhecimento do PFC e ensino e conhecimento do PFC e currículo. Como principais
resultados tem-se que, os professores do Ensino Médio melhor reconhecem o uso do PFC,
quando comparados com os professores do Ensino Fundamental. O reconhecimento do PFC
dos professores do Ensino Médio é muito superior ao dos alunos deste nível de ensino, o que
pode indicar que os professores parecem não estar ressaltando este princípio no ensino junto a
seus alunos. Os professores evidenciam conhecimentos comum e especializado do PFC, bem
como horizontal, mas não indicam como relacionar o princípio multiplicativo com as
fórmulas da Análise Combinatória. Evidenciam conhecimento do aluno, mas referente ao
conhecimento do ensino não deixam claro como o uso de outras estratégias, tais como árvores
de possibilidades e fórmulas, se relacionam com o PFC. Melhores conhecimentos do que é
prescrito e apresentado em currículos também são necessários. Conclui-se que os
conhecimentos docentes do PFC podem servir de base para um melhor desenvolvimento do
ensino e da aprendizagem da Combinatória, mas há aspectos do conhecimento que os
professores necessitam desenvolver melhor. Espera-se, assim, ter contribuído com o
levantamento de conhecimentos docentes sobre a Combinatória e também ter trazido
contribuições referentes ao papel do Princípio Fundamental da Contagem como eficiente
estratégia de ensino, por possibilitar a resolução de diferentes tipos de problemas
combinatórios. / The study aimed to investigate Middle and High School teachers' knowledge of how the
Fundamental Counting Principle (FCP), also known as multiplicative principle, can be used
in solving various combinatorial problems and in the construction of formulas of
Combinatorial Analysis. Previous research showed the importance of this principle in
teaching Combinatorics and how it facilitates the resolution of different types of
combinatorial situations. Two studies were performed, one study with the purpose of knowing
whether teachers and students recognize the FCP in combinatorial situations; and the other
study was designed to investigate Mathematics teachers knowledge about the resolution and
the teaching of combinatorial problems using the FCP. The first study involved a multiple
choice test and justifications, of data collected with Middle School and High School teachers
and students of the final level of basic education. For the second study semi structured
interviews with teachers were performed, based on the types of knowledge suggested by Ball,
Thames and Phelps (common content knowledge, specialized content knowledge, horizon
content knowledge, content knowledge and students, content knowledge and teaching and
content knowledge and curriculum). In this second study data collection was performed using
protocols with combinatorial situations resolved by students. These situations involved the
four types of combinatorial problems (Cartesian product, arrangement, permutation and
combination). Based on the knowledge proposed by Ball, Thames and Phelps, six categories
were created with a focus on the FCP to analyse teacher’s knowledge on the use of FCP in
solving combinatorial situations: common FCP knowledge, specialized FCP knowledge,
horizon FCP knowledge, FCP knowledge and students, FCP knowledge and teaching and
FCP knowledge and curriculum. The main results show that High School teachers better
recognize the use of FCP when compared to Middle School teachers. Recognition of the FCP
by High School teachers is much higher than the students of this school level, which may
indicate that teachers do not seem to be emphasizing this principle when teaching their
students. Teachers show common and specialized knowledge of the FCP and also horizon
knowledge, but do not indicate how to relate the multiplicative principle with the formulas of
Combinatorial Analysis. They demonstrate knowledge of the student, but referring to
knowledge of teaching they do not make clear how the use of other strategies, such as tree
diagrams and formula, relates to the FCP. Better knowledge of what is prescribed and
presented in curricula are also required. We conclude that FCP teachers’ knowledge can be
the basis for a better development of the teaching and learning of Combinatorics, but there are
aspects of knowledge that teachers need to develop better. It is expected, therefore, that the
study contributes to the survey of teachers’ knowledge of Combinatorics and also to have
brought contributions on the role of the Fundamental Counting Principle as an effective
teaching strategy, allowing for the resolution of different types of combinatorial problems.
|
2 |
NP vyhledávací problémy a redukce mezi nimi / NP vyhledávací problémy a redukce mezi nimiŠevčíková, Renáta January 2012 (has links)
NP search problems and reductions among them Renáta Ševčíková In the thesis we study the class of Total NP search problems. More attention is devoted to study the subclasses of Total NP search problems and reductions among them. We combine some known methods: the search trees and their relation to re- ductions, the Nullstellensatz refutation and the degree lower bound based on design to show that two classes of relativized NP search problems based on Mod-p counting principle and Mod-q counting principle, where p and q are different primes, are not reducible to each other. This thesis is finished by a new separation result for p = 2 and q = 3.
|
3 |
TO TEACH COMBINATORICS, USING SELECTED PROBLEMSModan, Laurentiu 07 May 2012 (has links) (PDF)
In 1972, professor Grigore Moisil, the most famous Romanian academician for Mathematics, said about Combinatorics, that it is “an opportunity of a renewed gladness”, because “each problem in the domain asks for its solving, an expenditure without any economy of the human intelligence”. More, the research methods, used in Combinatorics, are different from a problem to the other! This is the explanation for the existence of my actual paper, in which I propose to teach Combinatorics, using selected problems. MS classification: 05A05, 97D50.
|
4 |
TO TEACH COMBINATORICS, USING SELECTED PROBLEMSModan, Laurentiu 07 May 2012 (has links)
In 1972, professor Grigore Moisil, the most famous Romanian academician for Mathematics, said about Combinatorics, that it is “an opportunity of a renewed gladness”, because “each problem in the domain asks for its solving, an expenditure without any economy of the human intelligence”. More, the research methods, used in Combinatorics, are different from a problem to the other! This is the explanation for the existence of my actual paper, in which I propose to teach Combinatorics, using selected problems. MS classification: 05A05, 97D50.
|
5 |
Base Counting and Simple Mathematic Applications for the Special Education Classroom.Ray, James David 15 August 2006 (has links) (PDF)
This thesis was designed as a self study unit for middle school aged students with special needs. The unit is broken in to sub-units that specifically cater to each number base. Also included in this plan is a brief history of counting and practical uses for the mathematics of different number bases. This has been designed to be a "fun" unit to study after taking S.O.L. tests or other state standard testing. Included in each unit are worksheets for assessment of understanding.
|
Page generated in 0.0773 seconds