Spelling suggestions: "subject:"couplage spatiotemporel"" "subject:"couplage spatiotemporal""
1 |
Génération et caractérisation d'impulsions façonnées - Application au contrôle spatio-temporel de la lumière diffuséeTajalli, Ayhan 19 October 2012 (has links) (PDF)
Cette thèse porte sur une série d'études technologiques et d'applications physiques dans les domaines de la dynamique ultrarapide et contrôle cohérent. Du point de vue technologique, nous avons effectué une étude approfondie de couplage spatio-temporel induit par l'interaction de l'onde optique avec une onde acoustique au sein d'un cristal non linéaire pour le façonnage de l'impulsion laser ultra courte. Cette étude a été menée en utilisant des techniques interférométriques. Ces effets bien connus dans les façonneurs d'impulsions utilisant une ligne 4f n'avaient jamais été mesurés dans ce type façonneur. Nos résultats ont été les premiers à les démontrer, les quantifier et les expliquer. Du point de vue du contrôle, nous avons mis en évidence des résultats très intéressants concernant la refocalisation temporelle d'une impulsion large bande fortement perturbée par un milieu multi-diffusif (i.e. l'analogue temporel de speckle spatiale). Pour cela nous avons d'eveloppé une mesure résolue spatialement de la phase spectrale de l'impulsion déformée suivie par une rétroaction en boucle ouverte permettant la correction en temps réelle de la phase grâce à un façonneur d'impulsions: en raison de la linéarité du processus de diffusion, cette compensation a permis de réaliser la recompression d'une impulsion laser en sortie de l''echantillon en un point donné (localisation spatiale) . Cela a suscité beaucoup d'intérêts parmi les collègues pour diverses applications telles que l'imagerie biologique ou pour des développements utilisant l'optique quantique.
|
2 |
Dispositifs expérimentaux pour la caractérisation spatio-temporelle de chaines laser femtosecondes haute-puissance / Experimental devices for the spatiotemporal characterization of femtosecond high-power laser chainsGallet, Valentin 26 September 2014 (has links)
Un des avantages des lasers femtosecondes de haute puissance (TW-PW) est de pouvoir obtenir, au foyer d'une optique focalisante, des intensités très élevées atteignant jusqu'à 10^22W.cm^-2 soit un champ électrique de 2.7 PV.m^-1. Pour cela, ces chaînes lasers délivrent nécessairement des faisceaux de grands diamètres (jusqu'à 40 cm) et des impulsions très courtes (de l'ordre de la dizaine de femtosecondes). En conséquence, les propriétés spatiales et temporelles de l'impulsion ne sont généralement pas indépendantes. Ce type de dépendance, appelée couplage spatio-temporel, a pour conséquence d'augmenter la durée d'impulsion et la taille de la tache focale, ce qui peut conduire à une diminution notable de l'intensité maximale au foyer. Les dispositifs de métrologie couramment utilisés sur ces chaînes lasers femtosecondes de haute puissance ne permettent de mesurer les profils spatial et temporel de l'impulsion que de façon indépendante.L'objectif de cette thèse était de développer des techniques permettant de mesurer les couplages spatio-temporels afin de pouvoir quantifier leur effet et de les corriger dans l'optique d'obtenir l'intensité maximale au foyer. Ainsi, nous avons tout d'abord adapté une technique de caractérisation spatio-temporelle existante à la mesure de lasers TW. Afin d'éviter les contraintes induites au foyer, comme celles liées aux fluctuations de pointé, les mesures ont été réalisées sur le faisceau collimaté. Ajouter une source de référence en parallèle du dispositif initial, nous a aussi permis de prendre en compte les artéfacts de mesure dus aux variations thermiques et mécaniques affectant l'interféromètre. Grâce à cette amélioration, il est possible de reconstruire le profil spatio-temporel complet du faisceau, en particulier son front d'onde.Cependant, les limitations induites par cette technique, nous ont conduit à développer un nouveau dispositif de mesure. Basé sur une corrélation croisée, cette technique consiste à faire interférer le faisceau laser à caractériser avec une partie de ce dernier, suffisamment petite pour ne pas être distordue spatio-temporellement. Nous avons également mis en œuvre une variante de ce dispositif permettant une mesure mono-coup selon une dimension transverse de l'impulsion.A l'aide de ces différentes techniques, nous avons pu caractériser, pour la première fois, plusieurs chaînes lasers TW. Les mesures réalisées ont mis en lumière l'existence de couplages spatio-temporels résiduels conduisant à une baisse significative de l'intensité pic au foyer. Ces résultats montrent qu'il est indispensable de caractériser spatio-temporellement des chaînes lasers femtosecondes de haute puissance dans l'optique d'obtenir l'intensité maximale au foyer. / One of the advantages of high-power femtosecond lasers (TW-PW) is to obtain, at the focus of a focusing optic, very high intensities up to 10^22W.cm^-2 (i.e. an electric field of 2.7 PV.m^-1. Therefore, these lasers chains necessarily deliver beams with large diameter (up to 40 cm) and very short pulses (of the order of tens of femtoseconds). As a consequence, the spatial and temporal properties of the pulse are generally not independent. Such dependence, called spatial-temporal coupling has the effect of increasing the pulse duration and the size of the focal spot, which can lead to a significant reduction of the maximum intensity at the focus. Metrology devices commonly used on these high-power femtosecond lasers allow retriving the spatial and temporal profiles of the pulse only in an independent manner. The aim of this thesis was to develop techniques for measuring spatiotemporal couplings in order to quantify their effect and correct them in order to obtain the maximum intensity at focus. First of all, we adapted an existing technique of spatio-temporal characterization to the measurement of TW lasers. To avoid the issues induced at the focus, such as those related to jittering, measurements were performed on the collimated beam. By adding a reference source to the original device, we managed to take into account the measurement artifacts due to thermal and mechanical variations affecting the interferometer. With this improvement, it was possible to reconstruct the complete spatio-temporal profile of the beam, particularly its wavefront. However, the limitations imposed by this technique led to the development of a new measurement device. Based on a cross-correlation, this technique consists of making the laser beam to interfere with a part of itself, small enough not to be spatiotemporally distorted. We have also implemented a variant of this device for a single-shot measurement along one transverse dimension of the pulse. Using these techniques, we performed the very first characterization of several TW laser chains. The measurements have revealed the existence of residual space-time couplings leading to a significant decrease of the peak intensity at focus. These results show that it is essential to spatio-temporally characterize high power femtosecond laser chains to obtain the maximum intensity at focus.
|
Page generated in 0.0809 seconds