• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonal Responses of Terrestrial Carbon Cycle to Climate Variations in CMIP5 Models: Evaluation and Projection

Liu, Yongwen, Piao, Shilong, Lian, Xu, Ciais, Philippe, Smith, W. Kolby 08 1900 (has links)
Seventeen Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were evaluated, focusing on the seasonal sensitivities of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual variations in temperature and precipitation during 1982-2005 and their changes over the twenty-first century. Temperature sensitivity of NPP in ESMs was generally consistent across northern high-latitude biomes but significantly more negative for tropical and subtropical biomes relative to satellite-derived estimates. The temperature sensitivity of NBP in both inversion-based and ESM estimates was generally consistent in March-May (MAM) and September-November (SON) for tropical forests, semiarid ecosystems, and boreal forests. By contrast, for inversion-based NBP estimates, temperature sensitivity of NBP was nonsignificant for June-August (JJA) for all biomes except boreal forest; whereas, for ESM NBP estimates, the temperature sensitivity for JJA was significantly negative for all biomes except shrublands and subarctic ecosystems. Both satellite-derivedNPP and inversion-based NBP are often decoupled from precipitation, whereas ESM NPP and NBP estimates are generally positively correlated with precipitation, suggesting that ESMs are oversensitive to precipitation. Over the twenty-first century, changes in temperature sensitivities of NPP, Rh, and NBP are consistent across all RCPs but stronger under more intensive scenarios. The temperature sensitivity of NBP was found to decrease in tropics and subtropics and increase in northern high latitudes in MAM due to an increased temperature sensitivity of NPP. Across all biomes, projected temperature sensitivity of NPP decreased in JJA and SON. Projected precipitation sensitivity of NBP did not change across biomes, except over grasslands in MAM.
2

Integrating hydrodynamic and oil spill trajectory models for nowcasts/forecasts of Texas bays

Rosenzweig, Itay 03 October 2011 (has links)
A new method for automatically integrating the results of hydrodynamic models of currents in Texas bays with the National Oceanic and Atmospheric Administration’s (NOAA) in house oil spill trajectory model, the General NOAA Operational Modeling Environment (GNOME), is presented. Oil spill trajectories are predicted by inputting wind and water current forces on an initial spill in a dedicated spill trajectory model. These currents can be field measured, but in most real and meaningful cases, the current field is too spatially complex to measure with any accuracy. Instead, current fields are simulated by hydrodynamic models, whose results must then be coupled with a dedicated spill trajectory model. The newly developed automated approach based on Python scripting eliminates the present labor-intensive practice of manually coupling outputs and inputs of the separate models, which requires expert interpretation and modification of data formats and setup conditions for different models. The integrated system is demonstrated by coupling GNOME independently with TXBLEND – a 2D depth-averaged model which is currently used by the Texas Water Development Board, and SELFE – a newer 3D hydrodynamic model with turbulent wind mixing. A hypothetical spill in Galveston Bay is simulated under different conditions using both models, and a brief qualitative comparison of the results is used to raise questions that may be addressed in future work using the automated coupling system to determine the minimum modeling requirements for an advanced oil spill nowcast/forecast platform in Texas bays. / text
3

A multimodel approach to modeling bay circulation in shallow bay-ship channel systems

Pothina, Dharhas 13 August 2012 (has links)
Numerical modeling of shallow microtidal semi-enclosed estuaries requires the effective simulation of physical processes with a wide range of temporal and spatial scales. In theory, application of sufficient grid resolution in both the horizontal and vertical should result in a reasonable simulation. However, in practice, this is not the case. Fully resolving the finest scales can be computationally prohibitive, and various algorithmic assumptions can break down at fine resolutions, leading to spurious oscillations in the solution. One method of simulating inherently cross-scale phenomena is to use multimodel approaches in which domain decomposition is used to divide the region into multiple subregions, each modeled by different submodels. These submodels are coupled to simulate the entire system efficiently. In general, the different models may involve different physics, they may be dimensionally heterogeneous or they may be both physically and dimensionally heterogeneous. A reduction in computational expense is obtained by using simpler physics and/or a reduced dimension model in the submodels. In this research, we look at the particular case of modeling shallow bays containing narrow, deep ship channels. In order to accurately model bay circulation, a model should capture the effect of these spatially localized navigational channels. Our research shows that modeling techniques currently used to simulate such systems using 2 dimensional or coarse resolution 3 dimensional estuary models misrepresent wind driven surface circulation in the shallow bay and tide driven volume fluxes through the channel. Fully resolving the geometry of the ship channel is impractical on all but large parallel computing clusters. We propose a more efficient method using the multimodel approach. This approach splits the estuary into a shallow bay region and a subsurface ship channel region. By separating the physical domain into two parts in this way, simpler models can be used that are targeted at the different physical processes and geometries dominant in each region. By using a low resolution 3D model (SELFE) in the shallow bay region, coupled through appropriate interface conditions with a 2D laterally averaged model, the effects of the ship channel on bay circulation are accurately represented at a fraction of the computational expense. In this research, this coupled model was developed and applied to an ideal shallow bay- ship channel system. The coupled model approach is found to be an effective strategy for modeling this type of system. / text
4

Etude et développement d'algorithmes d'assimilation de données variationnelle adaptés aux modèles couplés océan-atmosphère / Study and development of some variational data assimilation methods suitable for ocean-atmophere coupled models

Pellerej, Rémi 26 March 2018 (has links)
La qualité des prévisions météorologiques repose principalement sur la qualité du modèle utilisé et de son état initial. Cet état initial est reconstitué en combinant les informations provenant du modèle et des observations disponibles en utilisant des techniques d'assimilation de données. Historiquement, les prévisions et l'assimilation sont réalisées dans l'atmosphère et l'océan de manière découplée. Cependant, les centres opérationnels développent et utilisent de plus en plus des modèles couplés océan-atmosphère. Or, assimiler des données de manière découplée n'est pas satisfaisant pour des systèmes couplés. En effet, l'état initial ainsi obtenu présente des inconsistances de flux à l'interface entre les milieux, engendrant des erreurs de prévision. Il y a donc besoin d'adapter les méthodes d'assimilation aux systèmes couplés. Ces travaux de thèse s'inscrivent dans ce contexte et ont été effectués dans le cadre du projet FP7 ERA-Clim2, visant à produire une réanalyse globale du système terrestre.Dans une première partie, nous introduisons les notions d'assimilation de données, de couplage et les différentes méthodologies existantes appliquées au problème de l'assimilation couplée. Ces méthodologies n’étant pas satisfaisantes en terme de qualité de couplage ou de coût de calcul, nous proposons, dans une seconde partie, des méthodes alternatives. Nous faisons le choix de méthodes d'assimilation basées sur la théorie du contrôle optimal. Ces alternatives se distinguent alors par le choix de la fonction coût à minimiser, des variables contrôlées et de l’algorithme de couplage utilisé. Une étude théorique de ces algorithmes a permis de déterminer un critère nécessaire et suffisant de convergence dans un cadre linéaire. Pour conclure cette seconde partie, les performances des différentes méthodes introduites sont évaluées en terme de qualité de l’analyse produite et de coût de calcul à l’aide d’un modèle couplé linéaire 1D. Dans une troisième et dernière partie, un modèle couplé non-linéaire 1D incluant des paramétrisations physique a été développé et implémenté dans OOPS (textit{Object-Oriented Prediction System}) qui est une surcouche logicielle permettant la mise en œuvre d’un ensemble d’algorithmes d’assimilation de données. Nous avons alors pu évaluer la robustesse de nos algorithmes dans un cadre plus réaliste, et conclure sur leurs performances vis à vis de méthodes existantes. Le fait d’avoir développé nos méthodes dans le cadre de OOPS devrait permettre à l’avenir de les appliquer aisément à des modèles réalistes de prévision. Nous exposons enfin quelques perspectives d'amélioration de ces algorithmes. / In the context of operational meteorology and oceanography, forecast skills heavily rely on the model used and its initial state. This initial state is produced by a proper combination of model dynamics and available observations via data assimilation techniques. Historically, numerical weather prediction is made separately for the ocean and the atmosphere in an uncoupled way. However, in recent years, fully coupled ocean-atmosphere models are increasingly used in operational centres. Yet the use of separated data assimilation schemes in each medium is not satisfactory for coupled problems. Indeed, the result of such assimilation process is generally inconsistent across the interface, thus leading to unacceptable artefacts. Hence, there is a strong need for adapting existing data assimilation techniques to the coupled framework. This PhD thesis is related to this context and is part of the FP7 ERA-Clim2 project, which aim to produce an earth system global reanalysis.We first introduce data assimilation and model coupling concepts, followed by some existing algorithms of coupled data assimilation. Since these methods are not satisfactory in terms of coupling strengh or numerical cost, we suggest, in a second part, some alternatives. These are based on optimal control theory and differ by the choice of the cost function to minimize, controled variable and coupling algorithm used. A theoretical study of these algorithms exhibits a necessary and sufficient convergence criterion in a linear case. To conclude about this second part, the different methods are compared in terms of analysis quality and numerical cost using a 1D linear model. In a third part, a 1D non-linear model with subgrid parametrizations was developed and implemented in OOPS (Object-Oriented Prediction System), a software overlay allowing the implementation of a set of data assimilation algorithms. We then assess the robustness of the different algorithms in a more realistic case, and concluded about their performances against existing methods. By implementing our methods in OOPS, we hope it should be easier to use them with operational forecast models. Finally, we expose some propects for improving these algorithms.
5

Sensitivity analysis of grate inlet representation and a comparison of two coupled hydraulic models for urban flood simulation / Känslighetsanalys av dagvattenbrunnars representation och en jämförelse mellan två kopplade hydrauliska modeller för simulering av urban översvämning

Lundqvist, Daniel January 2020 (has links)
Urban flood models are an important tool in designing and analyzing municipalities sewer drainage systems and predicting the effect of potential extent and depth of future floods. In urban areas, coupled 1D-2D flood models are particularly useful as they can represent the surface- and sewer system and their interactions. But it iss common practice to simplify the sewer system by only simulating water exchange between both systems at manholes while neglecting the effect of grate inlets. To investigate the effect grate inlet representations have in flood models, the simulation results of different models created in the software MIKE FLOOD with the number of nodes and inlet sizes adjusted according to the location of actual grate inlets were compared. In addition, a comparison between the flood modeling softwares MIKE FLOOD and FLO-2D was performed, based on a case study in Motala.. It was found that both MIKE FLOOD and FLO-2D can predict similar flood propagation and maximum water depths. The MIKE FLOOD models predicted larger amounts of drained water via the sewer system. This was likely caused by the extra water added through water level correction in the MIKE FLOOD models combined with numerical instabilities in the FLO-2D sewer models. Adjusting the number and dimensions of nodes according to actual grate inlets proved to have little effect on the predicted maximum surface water depths. But it did result in decreased drainage capacity together with less sewer inflow compared to the models neglecting grate inlets. The inlet representation did have a significant effect on predicted flood durations, with the models neglecting grate inlets having shorter flood durations in downstream areas and longer flood durations in upstream areas compared to the other models. It was also found that that the effect inlet node representations has on flood durations heavily depends on their locations with nodes located in water gathering areas such as depressions with ponding water having the most effect.
6

Climatologia de bloqueios atmosféricos no hemisfério Sul: observações, simulações do clima do século XX e cenários futuros de mudanças climáticas / A Climatology of Southern Hemisphere Blockings: Observations, Simulations of the 20th Century and Future Climate Change Scenarios.

Oliveira, Flavio Natal Mendes de 26 August 2011 (has links)
Este estudo discute uma climatologia de 59 anos (1949-2007) de bloqueios no Hemisfério Sul (SH) usando dados de altura geopotencial em 500-hPa das reanálises do National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR). A variabilidade espaço-temporal dos eventos de bloqueio e associações com o El Niño/Oscilação do Sul (ENOS) também foram examinadas. Adicionalmente, os bloqueios foram investigados em dois Modelos de Circulação Geral Acoplados Atmosfera-Oceano de clima (MCGAO) do Intergovernamental Painel for Climate Change (IPCC), o ECHAM5/MPI-OM e o MIROC 3.2. Dois cenários simulados foram analisados: O clima do século XX e o cenário de emissão A1B. Os episódios do ENOS foram identificados usando dois métodos. O primeiro foi o Índice Oceânico Mensal do Niño (ONI) do Climate Prediction Center (CPC-NCEP). O segundo método foi baseado em Funções Empíricas Ortogonais (EOF) e foi aplicado nos MCGAOs. Similarmente, também foi examinado a influencia combinada do ENOS e a Oscilação Antártica (AAO) na ocorrência e características dos bloqueios. O índice diário da AAO foi obtido pelo CPC-NCEP. Os índices convencionais de bloqueios detectam principalmente variações longitudinais. Este trabalho propõe um índice de bloqueio que detecta, além de variações longitudinais também as variações latitudinais dos bloqueios. Cinco setores relevantes de bloqueios foram examinados em detalhes: Indico Sudoeste (SB1), Pacífico Sudoeste (SB2), Pacífico Central (SB3), Pacífico Sudeste (SB4) e Atlântico Sudoeste (SB5). Além disso, foram investigados duas grandes regiões do Pacífico Sul: Pacífico Oeste e Pacífico Leste. Foi encontrado que a escala média típica dos eventos de bloqueio varia entre 1,5 e 2,5 dias. Além disso, a duração dos eventos depende da latitude, com eventos de maior duração observados em latitudes mais altas. Diferenças longitudinais estatisticamente significativas na freqüência do escoamento bloqueado foram observadas entre as fases Quente e Neutra do ENOS desde o outono a primavera. Episódios intensos da fase Quente do ENOS (isto é, moderados a fortes) tendem a modificar o local preferencial de bloqueio, mas não a freqüência. Por outro lado, os episódios fracos da fase Quente do ENOS estiveram associados relativamente com alta freqüência. Os Eventos de bloqueio durante o ENOS+ duram, em média, mais um dia relativamente aos episódios Neutros. Em contraste, a fase Fria do ENOS (ENOS-) caracterizou-se pela redução dos eventos de bloqueio sobre o setor do Pacífico Central, exceto durante os meses do verão austral. Entretanto, nenhuma diferença estatisticamente significativa foi detectada na duração dos eventos. Composições de anomalias de vento em 200-hPa indicam que o enfraquecimento (fortalecimento) do jato polar em torno de 60ºS durante a AAO negativa (positiva) em ambas as fases do ENOS tem uma importância significativa no aumento (redução) dos eventos de bloqueio. Um significativo aumento estatístico dos eventos sobre o setor do Pacífico Sudeste foi observado durante a AAO negativa em ambas as fases do ENOS. Ainda, um aumento (redução) dos eventos foi observado sobre a região do Pacífico Oeste na fase negativa (positiva) da AAO durante o ENOS-. Em contraste, durante o ENOS+ não houve diferenças estatisticamente significativas na distribuição longitudinal dos eventos separado de acordo com as fases opostas da AAO, embora haja um aumento (redução) dos eventos da região do Pacífico Oeste para o Pacífico Leste durante a fase negativa (positiva) da AAO. Os MCGAOs simularam corretamente a amplitude do ciclo anual observado. Também, ambos os MCGAOs simularam melhor a duração e o local preferencial do que freqüência. Nenhum MCGAO simulou adequadamente a freqüência durante a fase Neutra do ENOS. O ECHAM5/MPI-OM (rodada 2) mostra um erro sistemático que levam a uma superestimativa na freqüência de eventos sobre o Pacífico Leste durante as fases Neutra e Fria do ENOS. As diferenças entre as duas versões do MIROC 3.2 indicam que a alta resolução nos modelos melhora o desempenho em simular a freqüência de bloqueios. / This study discusses 59-yr climatology (1949-2007) of Southern Hemisphere (SH) blockings using daily 500-hPa geopotential height data from National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR reanalysis. The spatiotemporal variability of blocking events and associations with El Nino/Southern Oscillation (ENSO) are examined. Additionally, blockings were examined in two Intergovernmental Panel for Climate Change (IPCC) Coupled General Circulation Models (CGCM), ECHAM5/MPI-OM and MIROC 3.2. Two sets of simulations were examined: the climate of the 20th century and the A1B emission scenario. ENSO episodes were identified using two methods. The first method was the Monthly Oceanic Niño Index (ONI) from the Climate Prediction Center (CPC-NCEP). The second method was based on Empirical Orthogonal Function (EOF) and was applied to identify ENSO episodes in the CGCMs. Similarly, the combined influence of ENSO and the Antarctic Oscillation (AAO) on the occurrence and characteristics of blockings was also examined. The daily AAO index was obtained from CPC/NCEP. Most conventional blocking indices detect longitudinal variations of blockings. In this study we propose a new blocking index that detects longitudinal and latitudinal variations of blockings. The following relevant sectors of blocking occurrence were identified and examined in detail: Southeast Indian (SB1), Southwest Pacific (SB2), Central Pacific (SB3), Southeast Pacific (SB4) and Southwest Atlantic (SB5) oceans. In addition, we investigated two large regions of South Pacific: West Pacific and East Pacific. We found that the typical timescale of a blocking event is about ~1.5 2.5 days. Nonetheless, the duration of events depends on the latitude, with larger durations observed at higher latitudes. Statistically significant differences in the longitude of blockings are observed between Warm (ENSO+) and Neutral ENSO phases from the Austral fall to spring. Moderate to strong Warm ENSO episodes modulate the preferred locations of blockings but do not play a significant role for variations in their frequency. On the other hand, weak ENOS+ episodes were associated with relatively high frequency of blockings. Blocking events during ENSO+ last on average one more day compared to events that occur during Neutral episodes. In contrast, Cold (ENOS-) ENSO episodes are characterized by a decrease of blockings over the Central Pacific sector, except during the Austral summer months. However, no statistically significant differences are detected in the duration. Composites of 200-hPa zonal wind anomalies indicate that the weakening (strengthening) of the polar jet around 60oS during negative (positive) AAO phases in both ENSO phases plays a major role for the relative increase (decrease) of blocking events. A statistically significant increase of events over Southeast Pacific is observed during negative AAO phases in both ENSO phases. Moreover, an increase (decrease) of events is observed over West Pacific region when negative (positive) AAO phases occur during ENSO-. In contrast, during ENSO+ there is no statistically significant difference in the longitudinal distribution of events separated according to opposite AAO phases, although there is an increase (decrease) in the events from West Pacific region to East Pacific during negative (positive) AAO phase. The CGCMs investigated in this study correctly simulated the amplitude of observed annual cycle of geopotential height in the extratropics. Also, both CGCMs show a better performance in simulating the duration and preferred locations of blockings than their frequency. None of these CGCMs simulated well the frequency during Neutral ENSO phase. The ECHAM5/MPI-OM (run2) shows systematic biases in some regions. For instance, this model overestimates the frequency of blockings over East Pacific region during Cold and Neutral ENSO phases. The differences between the two versions of MIROC 3.2 indicate that the increase in resolution improves the performance of the model in simulating the frequency of blockings.
7

Climatologia de bloqueios atmosféricos no hemisfério Sul: observações, simulações do clima do século XX e cenários futuros de mudanças climáticas / A Climatology of Southern Hemisphere Blockings: Observations, Simulations of the 20th Century and Future Climate Change Scenarios.

Flavio Natal Mendes de Oliveira 26 August 2011 (has links)
Este estudo discute uma climatologia de 59 anos (1949-2007) de bloqueios no Hemisfério Sul (SH) usando dados de altura geopotencial em 500-hPa das reanálises do National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR). A variabilidade espaço-temporal dos eventos de bloqueio e associações com o El Niño/Oscilação do Sul (ENOS) também foram examinadas. Adicionalmente, os bloqueios foram investigados em dois Modelos de Circulação Geral Acoplados Atmosfera-Oceano de clima (MCGAO) do Intergovernamental Painel for Climate Change (IPCC), o ECHAM5/MPI-OM e o MIROC 3.2. Dois cenários simulados foram analisados: O clima do século XX e o cenário de emissão A1B. Os episódios do ENOS foram identificados usando dois métodos. O primeiro foi o Índice Oceânico Mensal do Niño (ONI) do Climate Prediction Center (CPC-NCEP). O segundo método foi baseado em Funções Empíricas Ortogonais (EOF) e foi aplicado nos MCGAOs. Similarmente, também foi examinado a influencia combinada do ENOS e a Oscilação Antártica (AAO) na ocorrência e características dos bloqueios. O índice diário da AAO foi obtido pelo CPC-NCEP. Os índices convencionais de bloqueios detectam principalmente variações longitudinais. Este trabalho propõe um índice de bloqueio que detecta, além de variações longitudinais também as variações latitudinais dos bloqueios. Cinco setores relevantes de bloqueios foram examinados em detalhes: Indico Sudoeste (SB1), Pacífico Sudoeste (SB2), Pacífico Central (SB3), Pacífico Sudeste (SB4) e Atlântico Sudoeste (SB5). Além disso, foram investigados duas grandes regiões do Pacífico Sul: Pacífico Oeste e Pacífico Leste. Foi encontrado que a escala média típica dos eventos de bloqueio varia entre 1,5 e 2,5 dias. Além disso, a duração dos eventos depende da latitude, com eventos de maior duração observados em latitudes mais altas. Diferenças longitudinais estatisticamente significativas na freqüência do escoamento bloqueado foram observadas entre as fases Quente e Neutra do ENOS desde o outono a primavera. Episódios intensos da fase Quente do ENOS (isto é, moderados a fortes) tendem a modificar o local preferencial de bloqueio, mas não a freqüência. Por outro lado, os episódios fracos da fase Quente do ENOS estiveram associados relativamente com alta freqüência. Os Eventos de bloqueio durante o ENOS+ duram, em média, mais um dia relativamente aos episódios Neutros. Em contraste, a fase Fria do ENOS (ENOS-) caracterizou-se pela redução dos eventos de bloqueio sobre o setor do Pacífico Central, exceto durante os meses do verão austral. Entretanto, nenhuma diferença estatisticamente significativa foi detectada na duração dos eventos. Composições de anomalias de vento em 200-hPa indicam que o enfraquecimento (fortalecimento) do jato polar em torno de 60ºS durante a AAO negativa (positiva) em ambas as fases do ENOS tem uma importância significativa no aumento (redução) dos eventos de bloqueio. Um significativo aumento estatístico dos eventos sobre o setor do Pacífico Sudeste foi observado durante a AAO negativa em ambas as fases do ENOS. Ainda, um aumento (redução) dos eventos foi observado sobre a região do Pacífico Oeste na fase negativa (positiva) da AAO durante o ENOS-. Em contraste, durante o ENOS+ não houve diferenças estatisticamente significativas na distribuição longitudinal dos eventos separado de acordo com as fases opostas da AAO, embora haja um aumento (redução) dos eventos da região do Pacífico Oeste para o Pacífico Leste durante a fase negativa (positiva) da AAO. Os MCGAOs simularam corretamente a amplitude do ciclo anual observado. Também, ambos os MCGAOs simularam melhor a duração e o local preferencial do que freqüência. Nenhum MCGAO simulou adequadamente a freqüência durante a fase Neutra do ENOS. O ECHAM5/MPI-OM (rodada 2) mostra um erro sistemático que levam a uma superestimativa na freqüência de eventos sobre o Pacífico Leste durante as fases Neutra e Fria do ENOS. As diferenças entre as duas versões do MIROC 3.2 indicam que a alta resolução nos modelos melhora o desempenho em simular a freqüência de bloqueios. / This study discusses 59-yr climatology (1949-2007) of Southern Hemisphere (SH) blockings using daily 500-hPa geopotential height data from National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR reanalysis. The spatiotemporal variability of blocking events and associations with El Nino/Southern Oscillation (ENSO) are examined. Additionally, blockings were examined in two Intergovernmental Panel for Climate Change (IPCC) Coupled General Circulation Models (CGCM), ECHAM5/MPI-OM and MIROC 3.2. Two sets of simulations were examined: the climate of the 20th century and the A1B emission scenario. ENSO episodes were identified using two methods. The first method was the Monthly Oceanic Niño Index (ONI) from the Climate Prediction Center (CPC-NCEP). The second method was based on Empirical Orthogonal Function (EOF) and was applied to identify ENSO episodes in the CGCMs. Similarly, the combined influence of ENSO and the Antarctic Oscillation (AAO) on the occurrence and characteristics of blockings was also examined. The daily AAO index was obtained from CPC/NCEP. Most conventional blocking indices detect longitudinal variations of blockings. In this study we propose a new blocking index that detects longitudinal and latitudinal variations of blockings. The following relevant sectors of blocking occurrence were identified and examined in detail: Southeast Indian (SB1), Southwest Pacific (SB2), Central Pacific (SB3), Southeast Pacific (SB4) and Southwest Atlantic (SB5) oceans. In addition, we investigated two large regions of South Pacific: West Pacific and East Pacific. We found that the typical timescale of a blocking event is about ~1.5 2.5 days. Nonetheless, the duration of events depends on the latitude, with larger durations observed at higher latitudes. Statistically significant differences in the longitude of blockings are observed between Warm (ENSO+) and Neutral ENSO phases from the Austral fall to spring. Moderate to strong Warm ENSO episodes modulate the preferred locations of blockings but do not play a significant role for variations in their frequency. On the other hand, weak ENOS+ episodes were associated with relatively high frequency of blockings. Blocking events during ENSO+ last on average one more day compared to events that occur during Neutral episodes. In contrast, Cold (ENOS-) ENSO episodes are characterized by a decrease of blockings over the Central Pacific sector, except during the Austral summer months. However, no statistically significant differences are detected in the duration. Composites of 200-hPa zonal wind anomalies indicate that the weakening (strengthening) of the polar jet around 60oS during negative (positive) AAO phases in both ENSO phases plays a major role for the relative increase (decrease) of blocking events. A statistically significant increase of events over Southeast Pacific is observed during negative AAO phases in both ENSO phases. Moreover, an increase (decrease) of events is observed over West Pacific region when negative (positive) AAO phases occur during ENSO-. In contrast, during ENSO+ there is no statistically significant difference in the longitudinal distribution of events separated according to opposite AAO phases, although there is an increase (decrease) in the events from West Pacific region to East Pacific during negative (positive) AAO phase. The CGCMs investigated in this study correctly simulated the amplitude of observed annual cycle of geopotential height in the extratropics. Also, both CGCMs show a better performance in simulating the duration and preferred locations of blockings than their frequency. None of these CGCMs simulated well the frequency during Neutral ENSO phase. The ECHAM5/MPI-OM (run2) shows systematic biases in some regions. For instance, this model overestimates the frequency of blockings over East Pacific region during Cold and Neutral ENSO phases. The differences between the two versions of MIROC 3.2 indicate that the increase in resolution improves the performance of the model in simulating the frequency of blockings.
8

Modelling and experimental validation of the hygrothermal performances of earth as a building material / Modélisation et validation expérimentale des performances hygrothermiques de la terre comme matériau de construction

Soudani, Lucile, Caroline, Laurence 09 December 2016 (has links)
La thèse s'inscrit dans un projet de recherche national (ANR Primaterre) qui a pour but d'étudier les performances (mécaniques et thermiques) réelles des matériaux de construction premiers à faible énergie grise que sont la terre crue et la limousinerie.Le travail de thèse se concentre sur les aspects thermiques et hygrothermiques de la terre crue, c'est-à-dire le couplage entre les transferts de masse d'eau (liquide et vapeur) et de chaleur au sein du matériau. Dans une première partie, une analyse des performances thermiques et hydriques d'une habitation comportant des murs en pisé (terre crue compactée) instrumentés a été réalisée. Cette étude a été complétée par la mesure, en laboratoire, des propriétés thermiques et hydriques du matériau. Le lien entre les paramètres matériaux mesurés et les performances (hygro)-thermiques a été appréhendé à la lumière d'un modèle numérique couplé, adapté aux caractéristiques particulières du matériau. Cette étude a mis en évidence que, de par leur aptitude à stocker puis restituer l'énergie solaire, leur capacité de stockage hydrique et la complexité des transports et changements de phases de l'eau se produisant en leur sein, les murs en terre crue présentent de nombreuses particularités qu'il convient de prendre en compte pour une bonne prédiction de leur impact sur les performances d'une habitation. / The Ph.D. is part of a national research project (ANR Primaterre) aiming at promoting real performances (mechanical and thermal) of primary construction materials with low embodied energy such as raw earth.This work focuses on the thermal and hygrothermal behaviour of rammed earth, i.e. coupled transfers of heat and moisture (liquid water and water vapour) within the material. On the one hand, an evaluation of the thermal and hygric performances of a monitored house with rammed earth walls is provided. This study is completed with laboratory measurements of the thermal and hydric properties of the material. A numerical coupled model, suitable for the specific characteristics of the material, provides a better understanding of the link between the characterization parameters measured and its (hygro)thermal performances. Because of their ability to store and release heat from the sun, their capacity to store moisture and the complexity of the transfers occurring in their pores, earthen walls display many distinctive features that are essential to count for in order to provide an accurate prediction of their impact on the global performances of a building.
9

Development of a multimodal port freight transportation model for estimating container throughput

Gbologah, Franklin Ekoue 08 July 2010 (has links)
Computer based simulation models have often been used to study the multimodal freight transportation system. But these studies have not been able to dynamically couple the various modes into one model; therefore, they are limited in their ability to inform on dynamic system level interactions. This research thesis is motivated by the need to dynamically couple the multimodal freight transportation system to operate at multiple spatial and temporal scales. It is part of a larger research program to develop a systems modeling framework applicable to freight transportation. This larger research program attempts to dynamically couple railroad, seaport, and highway freight transportation models. The focus of this thesis is the development of the coupled railroad and seaport models. A separate volume (Wall 2010) on the development of the highway model has been completed. The model railroad and seaport was developed using Arena® simulation software and it comprises of the Ports of Savannah, GA, Charleston, NC, Jacksonville, FL, their adjacent CSX rail terminal, and connecting CSX railroads in the southeastern U.S. However, only the simulation outputs for the Port of Savannah are discussed in this paper. It should be mentioned that the modeled port layout is only conceptual; therefore, any inferences drawn from the model's outputs do not represent actual port performance. The model was run for 26 continuous simulation days, generating 141 containership calls, 147 highway truck deliveries of containers, 900 trains, and a throughput of 28,738 containers at the Port of Savannah, GA. An analysis of each train's trajectory from origin to destination shows that trains spend between 24 - 67 percent of their travel time idle on the tracks waiting for permission to move. Train parking demand analysis on the adjacent shunting area at the multimodal terminal seems to indicate that there aren't enough containers coming from the port because the demand is due to only trains waiting to load. The simulation also shows that on average it takes containerships calling at the Port of Savannah about 3.2 days to find an available dock to berth and unload containers. The observed mean turnaround time for containerships was 4.5 days. This experiment also shows that container residence time within the port and adjacent multimodal rail terminal varies widely. Residence times within the port range from about 0.2 hours to 9 hours with a mean of 1 hour. The average residence time inside the rail terminal is about 20 minutes but observations varied from as little as 2 minutes to a high of 2.5 hours. In addition, about 85 percent of container residence time in the port is spent idle. This research thesis demonstrates that it is possible to dynamically couple the different sub-models of the multimodal freight transportation system. However, there are challenges that need to be addressed by future research. The principal challenge is the development of a more efficient train movement algorithm that can incorporate the actual Direct Traffic Control (DTC) and / or Automatic Block Signal (ABS) track segmentation. Such an algorithm would likely improve the capacity estimates of the railroad network. In addition, future research should seek to reduce the high computational cost imposed by a discrete process modeling methodology and the adoption of single container resolution level for terminal operations. A methodology combining both discrete and continuous process modeling as proposed in this study could lessen computational costs and lower computer system requirements at a cost of some of the feedback capabilities of the model This tradeoff must be carefully examined.
10

Effective reuse of coupling technologies for Earth System Models

Dunlap, Ralph S. 16 September 2013 (has links)
Designing and implementing coupled Earth System Models (ESMs) is a challenge for climate scientists and software engineers alike. Coupled models incorporate two or more independent numerical models into a single application, allowing for the simulation of complex feedback effects. As ESMs increase in sophistication, incorporating higher fidelity models of geophysical processes, developers are faced with the issue of managing increasing software complexity. Recently, reusable coupling software has emerged to aid developers in building coupled models. Effective reuse of coupling infrastructure means increasing the number of coupling functions reused, minimizing code duplication, reducing the development time required to couple models, and enabling flexible composition of coupling infrastructure with existing constituent model implementations. Despite the widespread availability of software packages that provide coupling infrastructure, effective reuse of coupling technologies remains an elusive goal: coupling models is effort-intensive, often requiring weeks or months of developer time to work through implementation details, even when starting from a set of existing software components. Coupling technologies are never used in isolation: they must be integrated with multiple existing constituent models to provide their primary services, such as model-to-model data communication and transformation. Unfortunately, the high level of interdependence between coupling concerns and scientific concerns has resulted in high interdependence between the infrastructure code and the scientific code within a model’s implementation. These dependencies are a source of complexity which tends to reduce reusability of coupling infrastructure. This dissertation presents mechanisms for increasing modeler productivity based on improving reuse of coupling infrastructure and raising the level of abstraction at which modelers work. This dissertation argues that effective reuse of coupling technologies can be achieved by decomposing existing coupling technologies into a salient set of implementation-independent features required for coupling high-performance models, increasing abstraction levels at which model developers work, and facilitating integration of coupling infrastructure with constituent models via component-based modularization of coupling features. The contributions of this research include: (1) a comprehensive feature model that identifies the multi-dimensional design space of coupling technologies used in high-performance Earth System Models, (2) Cupid, a domain-specific language and compiler for specifying coupling configurations declaratively and generating their implementations automatically, and (3) Component-based Coupling Operators (CC-Ops), a modular approach to code reuse of coupling infrastructure based on component technologies for high-performance scientific settings. The Cupid domain-specific language is evaluated by specifying a coupling configuration for an example fluid dynamics model and measuring the amount of code generated by the Cupid compiler compared to a hand coded version. The CC-Op approach is evaluated by implementing several CC-Ops using an existing high-performance component framework and measuring performance in terms of scalability and overhead.

Page generated in 0.0475 seconds