Spelling suggestions: "subject:"covering space"" "subject:"innovering space""
1 |
Adding Limit Points to Bass-Serre Graphs of GroupsShumway, Alexander Jin 01 July 2018 (has links)
We give a brief overview of Bass-Serre theory and introduce a method of adding a limit point to graphs of groups. We explore a basic example of this method, and find that while the fundamental theorem of Bass-Serre theory no longer applies in this case we still recover a group action on a covering space of sorts with a subgroup isomorphic to the fundamental group of our new base space with added limit point. We also quantify how much larger the fundamental group of a graph of groups becomes after this construction, and discuss the effects of adding and identifying together such limit points in more general graphs of groups. We conclude with a theorem stating that the cokernel of the map on fundamental groups induced by collapsing an arc between two limit points contains a certain fundamental group of a double cone of graphs of groups, and we conjecture that this cokernel is isomorphic to this double cone group.
|
2 |
Pro-Covering Fibrations of the Hawaiian EarringCallor, Nickolas Brenten 01 December 2014 (has links) (PDF)
Let H be the Hawaiian Earring, and let H denote its fundamental group. Assume (Bi) is an inverse system of bouquets of circles whose inverse limit is H. We give an explicit bijection between finite normal covering spaces of H and finite normal covering spaces of Bi. This bijection induces a correspondence between a certain family of inverse sequences of these covering spaces. The correspondence preserves the inverse limit of these sequences, thus offering two methods of constructing the same limit. Finally, we characterize all spaces that can be obtained in this fashion as a particular type of fibrations of H.
|
3 |
Triangulations de Delaunay dans des espaces de courbure constante négative / Delaunay triangulations of spaces of constant negative curvatureBogdanov, Mikhail 09 December 2013 (has links)
Nous étudions les triangulations dans des espaces de courbure négative constante, en théorie et en pratique. Ce travail est motivé par des applications dans des domaines variés. Nous considérons les complexes de Delaunay et les diagrammes de Voronoï dans la boule de Poincaré, modèle conforme de l'espace hyperbolique, en dimension quelconque. Nous utilisons l'espace des sphères pour la description des algorithmes. Nous étudions aussi les questions algébriques et arithmétiques et observons que les calculs effectués sont rationnels. Les démonstrations sont basées sur des raisonnements géométriques et n'utilisent aucune formulation analytique de la distance hyperbolique. Nous présentons une implantation complète, exacte et efficace en dimension deux. Le code est développé en vue d'une intégration dans la bibliothèque CGAL, qui permettra une diffusion à un large public. Nous étudions ensuite les triangulations de Delaunay des surfaces hyperboliques fermées. Nous définissons une triangulation comme un complexe simplicial afin de permettre l'adaptation de l'algorithme incrémentiel connu pour le cas euclidien. Le cœur de l'approche consiste à montrer l'existence d'un revêtement fini dans lequel les fibres définissent toujours une triangulation de Delaunay. Nous montrons une condition suffisante sur la longueur des boucles non contractiles du revêtement. Dans le cas particulier de la surface de Bolza, nous proposons une méthode pour construire un tel revêtement, en étudiant les sous groupes distingués du groupe fuchsien définissant la surface. Nous considérons des aspects liés à l'implantation. / We study triangulations of spaces of constant negative curvature -1 from both theoretical and practical points of view. This is originally motivated by applications in various fields such as geometry processing and neuro mathematics. We first consider Delaunay complexes and Voronoi diagrams in the Poincaré ball, a conformal model of the hyperbolic space, in any dimension. We use the framework of the space of spheres to give a detailed description of algorithms. We also study algebraic and arithmetic issues, observing that only rational computations are needed. All proofs are based on geometric reasoning, they do not resort to any use of the analytic formula of the hyperbolic distance. We present a complete, exact, and efficient implementation of the Delaunay complex and Voronoi diagram in the 2D hyperbolic space. The implementation is developed for future integration into the CGAL library to make it available to a broad public. Then we study the problem of computing Delaunay triangulations of closed hyperbolic surfaces. We define a triangulation as a simplicial complex, so that the general incremental algorithm for Euclidean Delaunay triangulations can be adapted. The key idea of the approach is to show the existence of a finite-sheeted covering space for which the fibers always define a Delaunay triangulation. We prove a sufficient condition on the length of the shortest non-contractible loops of the covering space. For the specific case of the Bolza surface, we propose a method to actually construct such a covering space, by studying normal subgroups of the Fuchsian group defining the surface. Implementation aspects are considered.
|
Page generated in 0.0908 seconds