• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 10
  • 10
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unpulsed gamma rays from the Crab pulsar and nebula /

Cheung, Wai-man. January 1994 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1994. / Typescript. Includes bibliographical references (leaves 92-94).
2

Coronal broadening of the Crab Nebula and aspects of interplanetary scintillation and ionospheric refraction /

Blesing, Robert Graham. January 1972 (has links) (PDF)
Thesis (Ph.D.) from the Dept. of Physics, University of Adelaide, 1973.
3

A search for very high energy gamma rays from the Crab pulsar-nebula

Kenter, Almus Thomas. January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1989. / Cover title. Includes bibliographical references (p. 253-256).
4

THE APPLICATION OF IMAGING TO THE ATMOSPHERIC CERENKOV TECHNIQUE: OBSERVATIONS OF THE CRAB NEBULA.

GIBBS, KENNETH GERARD. January 1987 (has links)
Gamma-ray astronomy is generally viewed as an adjunct to cosmic ray physics. As such, the observation of very high energy gamma-rays will allow a new and complementary means of examining the origin and evolution of cosmic rays. However, at present the atmospheric Cerenkov technique (the technique by which very high energy gamma-rays are observed) is seriously hampered by limited flux sensitivity. Monte Carlo simulations suggest that the application of imaging to the atmospheric Cerenkov technique will provide a much needed increase in sensitivity. The successful application of imaging to very high energy gamma-ray observations of the Crab nebula will be discussed, as will improved techniques for calibration and noise rejection. These observations permit an improved estimate of the nebular magnetic field strength.
5

Coronal broadening of the Crab Nebula and aspects of interplanetary scintillation and ionospheric refraction / by R.G. Blesing

Blesing, Robert Graham January 1972 (has links)
vi, 182 leaves, 2 p. : ill. ; 26 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.) from the Dept. of Physics, University of Adelaide, 1973
6

High energy gamma-ray observations of the Crab Nebula and pulsar with the solar tower atmospheric Cherenkov effect experiment /

Oser, Scott Michael. January 2000 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, August 2000. / Includes bibliographical references. Also available on the Internet.
7

Very high-energy gamma rays from the Crab nebula and pulsar.

Kwok, Ping Wai. January 1989 (has links)
This project is to search for Very High Energy (VHE) (10¹¹ eV to 10¹⁴ eV) gamma rays from the Crab nebula and pulsar using the atmospheric Cherenkov imaging technique. The technique uses an array of 37 photomultiplier tubes to record the images of the Cherenkov light pulses generated by energetic particles in the air showers initiated by VHE gamma rays or charged cosmic rays. Gamma-ray-like events are selected from numerous cosmic-ray events based on the predicted properties of the image, such as the size, shape, and orientation with respect to the axis of the detector. A steady weak flux of VHE gamma rays from the Crab is detected at high statistical significance (9 sigma), which is not usually achieved in VHE gamma-ray astronomy. No strong evidence of pulsed emission is found when the same data is folded at the Crab pulsar's radio ephemeris. The angular resolution of the technique cannot separate the emission coming from the nebula from that from the pulsar. Although it is generally believed that the unpulsed emission is coming from the nebula, there may be an unpulsed component coming at only a couple of light cylinder radii away from the pulsar too. Using the outer gap model of pulsar, the spectrum is derived and is found to be compatible with the observations.
8

Interstellar absorption of the Crab Nebula's soft x-ray flux and the x-ray spectrum of the Crab Pulsar

Coleman, Philip L.- January 1971 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1971. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
9

PROBING PHYSICAL CONDITIONS IN THE CRAB NEBULA WITH EMISSION LINE ANALYSIS

Wang, Xiang 01 January 2016 (has links)
We present a range of steady-state photoionization simulations, corresponding to different assumed shell geometries and compositions, of the unseen postulated rapidly expanding outer shell to the Crab Nebula. The properties of the shell are constrained by the mass that must lie within it, and by limits to the intensities of hydrogen recombination lines. In all cases the photoionization models predict very strong emission from high ionization lines that will not be emitted by the Crab’s filaments, alleviating problems with detecting these lines in the presence of light scattered from brighter parts of the Crab. The NIR [Ne VI] λ 7.652 mm line is a particularly good case; it should be dramatically brighter than the optical lines commonly used in searches. The C IV λ1549Å doublet is predicted to be the strongest absorption line from the shell, which is in agreement with HST observations. We show that the cooling timescale for the outer shell is much longer than the age of the Crab, due to the low density. This means that the temperature of the shell will actually “remember” its initial conditions. However, the recombination time is much shorter than the age of the Crab, so the predicted level of ionization should approximate the real ionization. In any case, it is clear that IR observations present the best opportunity to detect the outer shell and so guide future models that will constrain early events in the original explosion. Infrared observations have discovered a variety of objects, including filaments in the Crab Nebula and cool-core clusters of galaxies, where the H2 1-0 S(1) line is stronger than the infrared H I lines. A variety of processes could be responsible for this emission. Although many complete shock or PDR calculations of H2 emission have been published, we know of no previous simple calculation that shows the emission spectrum and level populations of thermally excited low-density H2. We present a range of purely thermal collisional simulations, corresponding to constant gas kinetic temperature at different densities. We consider the cases where the collisions affecting H2 are predominantly with atomic or molecular hydrogen. The resulting level population (often called “excitation”) diagrams show that excitation temperatures are sometimes lower than the gas kinetic temperature when the density is too low for the level populations to go to LTE. The atomic case goes to LTE at much lower densities than the molecular case due to larger collision rates. At low densities for the v=1 and 2 vibrational manifolds level populations are quasi-thermal, which could be misinterpreted as showing the gas is in LTE at high density. At low densities for the molecular case the level population diagrams are discontinuous between v=0 and 1 vibrational manifolds and between v=2, J=0, 1 and other higher J levels within the same vibrational manifold. These jumps could be used as density diagnostics. We show how much the H2 mass would be underestimated using the H2 1-0 S(1) line strength if the density is below that required for LTE. We give diagnostic diagrams showing level populations over a range of density and temperature. The density where the level populations are given by a Boltzmann distribution relative to the total molecular abundance (required to get the correct H2 mass), is shown for various cases. We discuss the implications of these results for the interpretation of H2 observations of the Crab Nebula and filaments in cool-core clusters of galaxies.
10

Crab flare observations with H.E.S.S. phase II

Balzer, Arnim January 2014 (has links)
The H.E.S.S. array is a third generation Imaging Atmospheric Cherenkov Telescope (IACT) array. It is located in the Khomas Highland in Namibia, and measures very high energy (VHE) gamma-rays. In Phase I, the array started data taking in 2004 with its four identical 13 m telescopes. Since then, H.E.S.S. has emerged as the most successful IACT experiment to date. Among the almost 150 sources of VHE gamma-ray radiation found so far, even the oldest detection, the Crab Nebula, keeps surprising the scientific community with unexplained phenomena such as the recently discovered very energetic flares of high energy gamma-ray radiation. During its most recent flare, which was detected by the Fermi satellite in March 2013, the Crab Nebula was simultaneously observed with the H.E.S.S. array for six nights. The results of the observations will be discussed in detail during the course of this work. During the nights of the flare, the new 24 m × 32 m H.E.S.S. II telescope was still being commissioned, but participated in the data taking for one night. To be able to reconstruct and analyze the data of the H.E.S.S. Phase II array, the algorithms and software used by the H.E.S.S. Phase I array had to be adapted. The most prominent advanced shower reconstruction technique developed by de Naurois and Rolland, the template-based model analysis, compares real shower images taken by the Cherenkov telescope cameras with shower templates obtained using a semi-analytical model. To find the best fitting image, and, therefore, the relevant parameters that describe the air shower best, a pixel-wise log-likelihood fit is done. The adaptation of this advanced shower reconstruction technique to the heterogeneous H.E.S.S. Phase II array for stereo events (i.e. air showers seen by at least two telescopes of any kind), its performance using MonteCarlo simulations as well as its application to real data will be described. / Das H.E.S.S. Experiment misst sehr hochenergetische Gammastrahlung im Khomas Hochland von Namibia. Es ist ein sogenanntes abbildendes atmosphärisches Cherenkov-Teleskopsystem welches in der 1. Phase, die im Jahr 2004 mit der Datennahme begann, aus vier identischen 13 m Spiegelteleskopen bestand. Seitdem hat sich H.E.S.S. als das erfolgreichstes Experiment in der bodengebundenen Gammastrahlungsastronomie etabliert. Selbst die älteste der mittlerweile fast 150 entdeckten Quellen von sehr hochenergetischer Gammastrahlung, der Krebsnebel, fasziniert immernoch Wissenschaftler mit neuen bisher unbekannten und unerwarteten Phänomenen. Ein Beispiel dafür sind die vor kurzem entdeckten sehr energiereichen Ausbrüche von hochenergetischer Gammastrahlung. Bei dem letzten deratigen Ausbruch des Krebsnebels im März 2013 hat das H.E.S.S. Experiment für sechs Nächte simultan mit dem Fermi-Satelliten, welcher den Ausbruch entdeckte, Daten genommen. Die Analyse der Daten, deren Ergebnis und deren Interpretation werden im Detail in dieser Arbeit vorgestellt. Während dieser Beobachtungen befand sich ein neues 24 m × 32 m großes Spiegelteleskop, das H.E.S.S. II- Teleskop, noch in seiner Inbetriebnahme, trotzdem hat es für eine dieser sechs Nächte an der Datennahme des gesamten Teleskopsystems teilgenommen. Um die Daten rekonstruieren und analysieren zu können, mussten die für die 1. Phase des Experiments entwickelten Algorithmen und die Software des H.E.S.S.- Experiments angepasst werden. Die fortschrittlichste Schauerrekonstruktionsmethode, welche von de Naurois und Rolland entwickelt wurde, basiert auf dem Vergleich von echten Schauerbildern, die mit Hilfe der Cherenkov-Kameras der einzelnen Teleskope aufgenommen wurden, mit Schauerschablonen die mit Hilfe eines semianalytischen Modells erzeugt wurden. Das am besten passende Bild und damit auch alle relevanten Schauerparameter, wird mit Hilfe einer pixelweisen Loglikelihood-Anpassung ermittelt. Die nötigen Änderungen um Multiteleskopereignisse, welche vom heterogenen H.E.S.S. Phase II Detektor gemessen wurden, mit Hilfe dieser fortschrittlichen Schauerrekonstruktionsmethode analysieren zu können, sowie die resultierenden Ergebnisse von MonteCarlo-Simulationen, als auch die Anwendung auf echte Daten, werden im Rahmen dieser Arbeit präsentiert.

Page generated in 0.0522 seconds