Spelling suggestions: "subject:"track"" "subject:"crack""
11 |
Process/property interactions in the new polyethylenesDavis, Paul January 1999 (has links)
No description available.
|
12 |
The characterisation of fatigue cracks by means of eddy currentsWilliams, D. J. A. January 1984 (has links)
No description available.
|
13 |
Simulation of crack propogation in shells with geophysical applicationsSmith, Christopher Anton January 1990 (has links)
No description available.
|
14 |
The application of linear elastic fracture mechanics to the fatigue and fracture of internally pressurized thick-wall cylindersPrice, H. January 1980 (has links)
No description available.
|
15 |
The application of distributed dislocations to the modelling of plane plastic flowBlomerus, P. M. January 1998 (has links)
No description available.
|
16 |
The influence of residual stresses on fatigueWilks, Martin David Bernard January 1994 (has links)
No description available.
|
17 |
The influence of minimum stress on the fatigue life of non strain crystallising elastomersAbraham, Frank January 2002 (has links)
No description available.
|
18 |
The determination of crack propagation rates of reflection cracking through asphalt surfacingsBrooker, Timothy Nicholas January 1986 (has links)
A large proportion of the U.K. highway network constructed in the 1960's and 1970's contains lean concrete roadbase with bituminous surfacing. Pavements containing relatively high strength lean concrete have rarely required structural maintenance (thick overlay or reconstruction) but have required maintenance because of reflection cracking where the surfacing cracks above cracks in the lean concrete. The time of appearance of this cracking is very variable (2-20 years). Field observations indicate that roadbase transverse crack spacings are often greater than 5m. Reflection cracking at these long spacings can be caused by thermal stresses, This project identifies conditions under which ther<ral reflection cracking will occur and develops a predictive model that allows estimation of the combined effect of thermal and traffic stresses. Finite element analyses indicate that initial crack development is likely to be caused by thermal stresses and final cracking will be assisted by traffic stresses. A temperature model has been developed to determine roadbase daily temperature range and surfacing temperature on a mean monthly basis. Thermal reflection cracking is considered to result from daily cycle fatigue rather than an extreme low temperature mechanism. A test rig has been developed to apply cyclic crack opening movements and simulative tests have been accelerated to 0.1Hz by using a "bitumen stiffness" fatigue criterion., Finite element results, displacements recorded during tests and tensile creep tests to determine mix stiffness, enable dc/dN and K 1 values and material constants (A, n) to be determined. This fracture mechanics interpretation of test results serves as the basis of the predictive model for thermal reflection cracking that is consistent with observations from an untrafficked road. The combined estimate of thermal and traffic stresses cannot however explain reflection cracking at<5m spacings. This cracking apparently initiates at the surface and is probably influenced by other mechanisms.
|
19 |
Generalized Boundary Approximation MethodsChen, Ya-Ling 18 July 2001 (has links)
This thesis consists of two parts for the boundary approximation
methods(BAMs). Part I is devoted to the Laplace equations with
theory and computation; Part II to the biharmonic equations only
with computation.
|
20 |
Finite element analysis of interfacial failure mechanisms in fibre-reinforced compositesNath, Rajat Bushan January 1998 (has links)
No description available.
|
Page generated in 0.034 seconds