Spelling suggestions: "subject:"cracking"" "subject:"fracking""
311 |
Thermal stress analysis of unidirectional fiber reinforced compositesAbedian, Ali 01 January 1998 (has links)
Composite materials are widely used in temperature fluctuating environments, which make these materials highly prone to cracking. The cracking phenomenon is a result of high thermal stresses that are generated by the mismatch in properties of the composite constituents, particularly the mismatch in the thermal expansion coefficient. The main objective of this study is to understand the micromechanics of such a phenomenon. The problem has been investigated using the finite element method (FEM). The analyses were performed utilizing 3-D prism and axisymmetric models. Hexagonal fiber packing of unidirectional composites was considered. The dimensions of the models were assumed such that the models could provide sufficient information on the behavior near the free surface as well as the interior of fiber composites. Properties of the constituents were considered to be temperature dependent. The elasto-plastic and visco-elastic characteristics of the materials were also included. The transient thermal analysis of the models showed that, for most practical applications, the temperature gradient in the composite constituents has minor effects on the stresses generated. Therefore, several stress analyses were performed assuming a uniformly changing temperature throughout the composite. The elastic analysis of thermal stresses and deformations showed high radial and hoop stress concentrations occurring at the fiber end on the free surface. This is contrary to the shear-lag theorem, which assumes that these stress components are negligible. An overlapping hypothesis, based on the deformation of the fiber and matrix, is proposed to explain such high radial and hoop stresses. Using regular FEM elements, it was concluded that the stresses are singular in nature. The stress singularity was numerically investigated and found to be of the type r -á with á being dependent on the material properties but having a value close to 1/3. The elasto-visco-plastic behavior of composites was also analyzed. Large plastic strains were localized at the fiber end even for a small temperature change. Creep effects that were significant at elevated temperatures brought about some stress relaxation during the manufacturing process. Thermally induced stress concentration in composites can be controlled, to some extent, by changing the geometry of the free surface. The analysis of such effects indicated that reduction of the contact angle between the fiber and the matrix on the fire surface reduced the high radial and hoop stress magnitudes. Also, the influence of covering the free surface of the composite with a thin layer of matrix-like material was studied. The magnitudes of the radial and hoop stress components were substantially reduced. The case when the cover and the composite are made in separate stages (two-stage covering), was also studied. Based on the analysis, effective and practical ways of applying the cover are recommended. To verify the effects of the covering process, experiments were conducted on large-scale laboratory-made composite samples. The samples with the free surface covered with a thin layer of matrix-like material showed no trace of cracking or fiber/matrix debonding even after 1000 thermal cycles. On the other hand, in the samples without cover, exposed to identical thermal cycling, numerous matrix cracks and extensive fiber/matrix debonding were observed.
|
312 |
Experimental and modeling study of a cold-flow fluid catalytic cracking unit stripperWiens, Jason Samuel 22 June 2010 (has links)
Many particulate processes are preferably implemented in circulating fluidized beds (CFB) over traditional low-velocity fluidization to take advantage of the many benefits of circulating systems. Fluid catalytic cracking (FCC) is one of the most successfully applied processes in CFB technology, with more than 350 FCC units in operation worldwide. Despite its extensive use, an understanding of the complex behaviour of these units is incomplete.<p>
A theoretical and experimental evaluation of the fluidization behaviour was conducted in the CFB riser, standpipe, and stripper. Initially, an extension of the existing CFB in the Fluidization Laboratory of Saskatchewan was designed. The experimental program conducted in this study included an examination of the solids flow behaviour in the riser, interstitial gas velocity in the downcomer, and stripping efficiency measurements. The hydrodynamic behaviour of the stripper was modeled using Multiphase Flow with Interphase eXchanges (MFIX) CFD code.<p>
The solids flow behaviour in the bottom zone of a high-density riser was investigated by measuring the local upwards and downwards solids flux. Solids circulation rates between 125 and 243 kg/(m2⋅s) were evaluated at a constant riser superficial gas velocity of 5.3 m/s. The effect of the riser superficial gas velocity of the local upflow at the riser centerline was also conducted at a solids circulation rate of 187 kg/(m2⋅s). The results show that there is little variation in the local net solids flux at radial locations between 0.00 ¡Ü r/R ¡Ü 0.87. The results indicate that a sharp regime change from a typical parabolic solids flux profile to this more radially uniform solids flux profile occurs at a gas velocity between 4.8 and 4.9 m/s.<p>
To quantify stripping efficiency, the underflow of an injected tracer into the standpipe must be known. Quantification of the underflow into the standpipe requires knowledge of two main variables: the interstitial gas velocity and the tracer gas concentration profiles in the standpipe. Stripping efficiency was determined for stripper solids circulation rates of 44, 60, and 74 kg/(m2⋅s) and gas velocities of 0.1, 0.2, and 0.3 m/s. For most conditions studied, the interstitial gas velocity profile was found to be flat for both fluidized and packed bed flow. The stripping efficiency was found to be sensitive to the operating conditions. The highest efficiency is attained at low solids circulation rates and high stripping gas velocities.<p>
In the numeric study, stripper hydrodynamics were examined for similar operating conditions as those used in the experimental program. Due to an improved radial distribution of gas and decreasing bubble rise velocity, mass transfer is deemed most intense as bubbles crest above the baffles into the interspace between disc and donut baffles. Stripping efficiency is thought to improve with increasing gas velocity due to an increased bubbling frequency. Stripping efficiency is thought to decrease with increasing solids circulation rates due to a lower emulsion-cloud gas interchange coefficient and a decreased residence time of the emulsion in the stripper.
|
313 |
Stress Intensity Solutions of Thermally Induced Cracks in a Combustor Liner Hot Spot Using Finite Element AnalysisRhymer, Donald William 17 November 2005 (has links)
Thermally cycling a thin plate of nickel-based superalloy with an intense in-plane thermal gradient, or hot spot, produces thermally induced crack growth not represented by classic thermo-mechanical fatigue (TMF). With the max hot spot temperature at 1093 C (2000 F) of a 1.5 mm thick, 82.55 mm diameter circular plate of B-1900+Hf, annular buckling and bending stresses result during each thermal cycle which drive the crack initiation and propagation. A finite element analysis (FEA) model, using ANSYS 7.1, has been developed which models the buckling and as well as represents the stress intensity at simulated crack lengths upon cool down of each thermal cycle. The model approximates the out-of-plane response at heat-up within 5% error and a difference in the final displacement of 0.185 mm after twelve thermal cycles. Using published da/dN vs. Keff data, the number of cycles needed to grow the crack to the experimental arrest distance is modeled within 1 mm. The number of cycles to this point is within 5 out of 462 in comparison to the experimental test.
|
314 |
Automated Protocol for the Analysis of Dynamic Mechanical Analyzer Date from Fine Aggregate Asphalt MixesCavalcanti De Sousa, Pedro 2010 August 1900 (has links)
Fatigue cracking and moisture damage are two important modes of distresses in asphalt pavements. Recently, the Dynamic Mechanical Analyzer (DMA) was used to characterize fatigue cracking and evaluate the effects of moisture damage on the Fine Aggregate Matrix (FAM) portion of asphalt mixtures. The FAM specimens should be properly fabricated to represent the composition and structure of the fine portion of the mixture.
The objective of the first phase of this study was to develop a standard test procedure for preparing FAM specimens such that it is representative of the mixture. The method consists of preparing loose full asphalt mixtures and sieving through different sizes. Then, the ignition oven was used to determine the binder content associated with the small size materials (passing on sieve #16). Sieve #16 is used to separate fine aggregates from the coarse aggregates. The applicability of this new method will be evaluated using a number of asphalt mixtures.
The objective of the second phase of this study was to develop software to analyze the data from DMA test. Such software will enable engineers and researchers to perform the complex analysis in very short time. This is Microsoft Windows ® based software, executable in any hardware configuration under this operational system.
|
315 |
Hot Cracking Susceptibility Of Twin Roll Cast Al-mg AlloysTirkes, Suha 01 October 2009 (has links) (PDF)
Increasing use of aluminum alloys in the automotive industry increases the importance
of the production of sheet aluminum. To provide cost effective sheet aluminum to the
industry, twin-roll casting (TRC) is becoming more important compared to DC casting.
Demand for usage of different aluminum alloys in sheet form introduces some
difficulties that should be considered during their applications. The main problem
encountered during the welding of aluminum alloys is hot cracking. The aim of this
study is to understand the difference in hot cracking susceptibility of two twin roll cast
(TRC) aluminum-magnesium alloys (5754 and 5049 alloys) during welding. Varestraint
test method was used to evaluate the effect of welding parameters, strain levels, filler
alloys and mid-plane segregation on hot cracking susceptibilities.
Hot cracking susceptibility of both 5049(Al-2wt%Mg) and 5754(Al-3wt%Mg) alloys
increased with increasing strain level. Also, it was observed that hot cracking
susceptibility was higher for the alloy having higher magnesium content. Thermal
analysis results verified that hot cracking susceptibility indeed can be related to the
v
solidification range. As is suggested in the solidification range approach, the results of
the present study confirm that the extent of solidification and liquation cracking depend
on the magnitude of solidification range and the strain imposed during welding. Hot
cracking susceptibility of 5754(Al-3wt%Mg) alloy has shown slightly decreasing
behavior with addition of 5356 filler alloy. On the other hand, addition of 5183 filler
alloy has increased solidification cracking susceptibility of two base alloys. The fracture
surfaces of liquation and solidification cracks were investigated by scanning electron
microscope with EDS. Liquation crack surfaces of the 5754(Al-3wt%Mg) alloy were
found to have high Mg and Si content. For the 5754(Al-3wt%Mg) alloy, a quench test
was designed to observe the effect of mid-plane segregation zone. It was observed that
there was a eutectic reaction resulting in formation of liquid phase below solidus
temperature of 5754(Al-3wt%Mg) alloy. Moreover, internal cracks have formed at the
mid-plane segregation zone after Varestraint test. Results show that 5049(Al-2wt%Mg)
alloy should be chosen compared to 5754(Al-3wt%Mg) alloy for welding. Moreover,
low line energy should be applied and filler alloys with high magnesium content should
be used during welding to decrease hot cracking tendency of welds.
|
316 |
Effect Of Welding Parameters On The Hot Cracking Behavior Of 7039 Aluminum - Zinc AlloyAkkus, Mert 01 September 2010 (has links) (PDF)
7039 aluminum alloys are widely being used in the aerospace, automotive and defense industries in which welding technique is used for their joining. The main problem encountered during the welding of 7039 aluminum alloy is hot cracking. The aim of this study is to understand the effect of welding parameters on the hot cracking behavior of 7039 aluminum alloy by using Modified Varestraint Test (MVT) with Gas Tunsgten Arc Welding (GTAW) technique. During tests, welding speed was selected as varying parameter, welding current was kept constant and to understand the effect of filler materials 5183 and 5356 aluminum alloy filler materials were used. It has been observed that with the change in welding speed hot
cracking susceptibility of 7039 aluminum alloy changes. The effect of filler materials is found to be favorable by decreasing the hot cracking susceptibility of 7039 aluminum alloy. Filler material additions also improved the hardness of the weld
metal. Based on the cracking mechanism hot cracks were investigated as solidification cracks and liquation cracks. It has been experienced that liquation cracking susceptibility of the filler material added samples has been affected from
the magnesium and manganese contents of the weld seams. Effect of solidification range on liquation cracking was also justified with differential thermal analyses. With the micro examinations the intergranular structure of hot cracking is revealed. In addition, the characterization and growth properties of the hot cracks under cyclic load were tried to be understood and the fractography of these cracks were taken.
|
317 |
Finite element simulation of crack depth measurements in concrete using diffuse ultrasoundSeher, Matthias Eugen 24 August 2011 (has links)
Surface-breaking cracks pose a serious threat to the service life of concrete structures and health monitoring is presently conducted by a visual inspection method, yielding a potential risk to safety. Diffuse ultrasonic techniques have shown their potential as an ultrasonic technique for measuring crack depth in concrete and are currently under development. In this research, the finite element method (FEM) is employed to model the ultrasound diffusion in a concrete specimen. The objectives are to use the commercial finite element (FE) tool Ansys to develop the finite element model of a concrete specimen and verify the applicability of the model by comparing with an analytic solution and experiment data. Further, various crack types are analyzed with the FE model in order to gain physical insight into the interpretation of experimental measurements.
The results of this research suggest that a preliminary knowledge of the cracking process is required to correctly interpret the measured impulse responses for an unknown crack geometry, as the impulse response expresses the response of the shortest path through a system of cracks between source and receiver. Moreover, the impulse response can carry some ambiguity, as certain crack types are not uniquely determined.
|
318 |
A study on the mechanism of stress corrosion cracking of duplex stainless steel in hot alkaline-sulfide solutionChasse, Kevin Robert 05 1900 (has links)
Corrosion and stress corrosion cracking of structural components cost an estimated $300 billion annually in the United States alone and are a safety concern for a number of industries using hot alkaline environments. These process environments may contain different amounts of sulfide and chloride; however, the combined role of these ions on the stress corrosion cracking of duplex stainless steels, which are widely used because of their generally reliable performance, had never been studied. This study shows that chlorides in sulfide-containing caustic environments actually have a significant influence on the performance of these alloys. A mechanism for stress corrosion cracking of duplex stainless steels in hot alkaline environments in the presence of sulfide and/or chloride was proposed. Microstructural and environmental aspects were studied using mechanical, electrochemical, and film characterization techniques. The results showed that selective corrosion of the austenite phase depended on percent sulfidity, alkalinity, and chloride content. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite phase boundaries. Unstable passivity of duplex stainless steels in hot alkaline-sulfide environments was due to anion adsorption on the surface leading to defective film formation. Chlorides and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films consisted of an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in alkaline and alkaline-sulfide environments. The onset of stress corrosion cracking was related to the extent of selective dissolution and was consistent with a film breakdown and repair mechanism similar to slip-step dissolution. Recommendations for reducing the susceptibility of duplex stainless steels to stress corrosion cracking in sulfide-containing caustic environments include reducing the chloride to hydroxide ratio and alloying with less Mo and Mn. The results will impact the petrochemical, pulp and paper, and other process industries as new duplex grades can be developed with optimal compositions and environments can be controlled to extend equipment life.
|
319 |
Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutionsYang, Di 01 November 2011 (has links)
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases.
Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs.
In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments.
Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
|
320 |
On folding of coated papersBarbier, Christophe January 2004 (has links)
<p>The mechanical behaviour of coated papers during folding has been investigated. This problem has been studied with experimental techniques and numerical analyses in order to give a better understanding of the folding properties of coated papers pertinent to the mechanical behaviour in general, and particularly cracking along the fold. </p><p>A microscopy investigation has been performed. The surface of the folded paper has been carefully examined to study the event of fracture and related issues. The influence of the grammage on the cracking event has been studied and it was shown that the coating material would not fail if the paper sample was sufficiently thin. It was found that a stress or strain based criterion is sufficient to describe the cracking of the coating layers and that the anisotropy of paper should be taken into account when studying the folding process. </p><p>The finite element method has been used for the numerical analyses remembering that the geometry of the problem is rather complicated, excluding a solution in analytical form. Using different constitutive models for the base stock, it has been shown that the deformation of the coated paper during folding is much governed by the paper substrate. The numerical results also suggested that particular forms of plastic anisotropy can substantially reduce the maximum strain levels in the coating. Furthermore, it has also been shown that delamination buckling, in the present circumstances, has a very small influence on the strain levels in the coating layer subjected to high tensile loading. </p><p>Dynamic effects have also been studied and it has been shown that a quasi-static analysis of the problem is sufficient in order to describe many of the important features related to cracking. An attempt to model strong anisotropy of paper has been presented and the results indicate that the large anisotropy in the thickness direction of coated papers needs to be taken into account in order to fully understand the mechanics of folding. </p><p>Finally, an experimental investigation has been presented in order to study if important mechanical properties of the coating material could be determined by microindentation techniques. The results presented indicate that microindentation can be a powerful tool for characterization of these materials, but only if careful efforts are made in order to account for the influence from plasticity as well as from boundary effects. </p><p><b>KEYWORDS:</b> folding, coated papers, finite element method, cracking, indentation, anisotropy, plasticity.</p>
|
Page generated in 0.0597 seconds