• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • Tagged with
  • 23
  • 23
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Crash Analysis of Ladder Chassis

Muthyala, Monica January 2019 (has links)
A chassis is known as the carrying unit of an automobile, like the engine, transmission shaft and other parts are mounted on it. Ladder chassis has longitudinal rails which are connected along the length with crossmembers through welding or mechanical fasteners. Rectangular box section is chosen for the longitudinal rails of ladder chassis. Design modifications are done in HyperMesh to improve torsional and bending stiffness of the chassis designed in steel and CFRP. Adding of the X- bracing cross-member and ribs are few of the techniques used to provide strength to chassis. This thesis aims to produce a light-weight chassis. A combination chassis of both steel and CFRP components is created by replacing heavy steel cross-members with CFRP cross-members, which resulted in the reduction of weight by 14.6%. Crash analysis is performed to all the chassis using Radioss. Depending on the result obtained from crash analysis and values of torsional and bending stiffness, the combination chassis is selected. Thickness optimization is performed to the combination chassis. It is observed that 7.91% of weight is further reduced in the combination chassis.
2

On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level

Narayanamoorthy, Sriram 04 March 2013 (has links)
This thesis proposes a new spatial multivariate count model to jointly analyze the traffic crash-related counts of pedestrians and bicyclists by injury severity. The modeling framework is applied to predict injury counts at a Census tract level, based on crash data from Manhattan, New York. The results highlight the need to use a multivariate modeling system for the analysis of injury counts by road-user type and injury severity level, while also accommodating spatial dependence effects in injury counts. / text
3

Design Analysis and Optimization of Front Underrun Protection Device

Sharma, Anil January 2018 (has links)
Under-running of passenger vehicle is one of the major parameters to be considered during the design and development of truck chassis. Front Under-run Protection Device (FUPD) plays an important role in avoiding under-running of vehicles from front side of a truck. This thesis is used to develop additional device which stops the impact from frontal area, which will not allow the passenger car inside the truck. The complete thesis was started from an idea of adding FUPD to truck chassis. Design of FUPD is done using 3D CAD software CATIA V5R20, then complete FUPD assembly is imported and done pre-processing using Altair Hyper Mesh, for visualizing the results. Crash analysis is done using Altair Radioss & results interpretation is done using HyperView and Hypergraph. FUPD is designed based on ECE R93 which satisfies the failure criteria (Standard) of displacement less than 400 mm. An Initial Design is generated along with Holding Brackets as an assembly using CATIA V5 as a tool. Base design is further optimized for getting light weight structure that meets structural performance criteria. By assuming all the loading conditions as per the standards, an amount of 27% mass reduction is obtained in FUPD Assembly along with holding bracket.
4

Patterns in Dynamic Slices to Assist in Automated Debugging

Burbrink, Joshua W. 10 October 2014 (has links)
No description available.
5

Twisted Metal: An Investigation into Observable Factors that Lead to Critical Traffic Events

Kieliszewski, Cheryl A. 09 December 2005 (has links)
The purpose of this research was to explore traffic event severity relationships, evaluate the potentiality of a hazardous event, and develop a framework of observable event factors. Data was collected from three regions in Virginia, each assumed to exemplify a unique driving environment due to amount of traffic and infrastructure characteristics. In combination, a broad spectrum of site, traffic, and driver performance variables were accounted for. Observational techniques of surveillance, incident reporting, and inventorying were used to collect site, traffic, and driver data. This effort resulted in 368 observed traffic events that were evenly distributed among the three regions that represented metropolitan, mid-sized city, and town/rural driving environments. The 368 events were evaluated for severity and contributing variables where 1% of the events were non-injury crashes, 10% were serious, near-crashes, 24% were near-crashes, and the remaining 65% were serious errors with a hazard present. Exploratory analyses were performed to understand the general relationship between event severity levels. Binary logistic regression analyses (α = 0.05) were performed to further scope predictor variables to identify traffic event characteristics with respect to severity level, maneuver type, and conflict type. The results were that 69 of 162 observed predictor variables were valuable in characterizing traffic events based on severity. It was found that variables could be grouped to create event severity signatures for crashes, serious near-crashes, and near-crashes. Based on these signatures, it was found that there is a trend between severity levels that included a propensity for problems with straight path maneuvers, lateral and longitudinal vehicle control, and information density within the driving environment as contributing to driver error and hence crashes and near-crashes. There were also differences between the severity levels. These differences were evident in the degree of control the driver appeared to have of the vehicle, type of control regulating the driving environment, and type of road users present in the driving environment. Modifications to roadway evaluative techniques would increase awareness of additional variables that impact drivers to make more informed decisions for roadway enhancements. / Ph. D.
6

A finite element study of shell and solid element performance in crash-box simulations / En jämförande finita elementstudie av skal- och solidelement i simulering av krockboxar

Bari, Mahdi January 2015 (has links)
This thesis comprehends a series of nonlinear numerical studies with the finite element software's LS-Dyna and Impetus AFEA. The main focus lies on a comparative crash analysis of an aluminium beam profile which the company Sapa technology has used during their crash analysis. The aluminium profile has the characteristic of having different thickness over span ratios within the profile. This characteristic provided the opportunity to conduct a performance investigation of shell and solid elements with finite element analysis. Numerical comparisons were made between shell and solid elements where measurable parameters such as internal energy, simulation times, buckling patterns and material failures were compared to physical tests conducted prior to this thesis by Sapa technology. The performance investigation of shell and solid elements was initiated by creating models of the aluminium profile for general visualization and to facilitate the meshing of surfaces. The meshing procedure was considered to be an important factor of the analysis. The mesh quality and element orientations were carefully monitored in order to achieve acceptable results when the models were compared to physical tests. Preliminary simulations were further conducted in order to obtain a clear understanding of software parameters when performing crash simulations in LS-Dyna and Impetus AFEA. The investigated parameters were element formulations and material models. A general parameter understanding facilitated in the selection of parameters for actual simulations, where material failure and damage models were used. In conclusion, LS-Dyna was observed to provide a bigger internal energy absorption during the crushing of the beam with longer simulation times for solid elements when compared to shell elements. Impetus AFEA did on the other hand provide results close to physical test data with acceptable simulation times when compared to physical tests. The result difference obtained from the FE-software's in relation to physical crash experiments were considered to be varied but did indicate that shell elements were efficient enough for the specific profile during simulations with LS-Dyna. Impetus AFEA proved that the same time to be numerically efficient for energy approximations with solid elements refined with the third polynomial.
7

Finite element analysis and optimisation of egg-box energy absorbing structures

Sanaei, Maryam January 2013 (has links)
This study investigates the mechanical and geometrical attributes of egg–box energy absorbing structures as crash safety barriers in the automotive industry. The research herein was originated from the earlier work of Prof. Shirvani, patented and further investigated by Cellbond Composites Ltd. who has invested in further research, for developing an analytical tool for geometric optimisation as an enhanced resolution to various shapes and materials. Energy absorption in egg-box occurs through plastic deformation of cell walls, examined through non–linear finite element simulations using ANSYS® and ANSYS/LS–DYNA® FE packages. Experimental dynamic crash tests have been designed to verify the validity of the FE simulations. Geometrical models are defined as 3D graphical representations, outlined in detail. Further, the impact behaviour of commercially pure aluminium egg-box energy absorbers is studied to identify the optimum design parameters describing the geometry of the structure. A simulation-based multi-objective optimisation strategy is employed to find a set of Pareto-optimal solutions where each solution represents a trade-off point with respect to the two conflicting objectives: the maximum impact force and the energy absorption capacity of the structure. The aim is to simultaneously minimise the former and maximise the latter, in the attempt to find purpose–specific optimal egg–box geometries. In light of the associated outcomes, it is shown that egg–box geometries with < ω ), thin walls (t < 1mm), short inter–peak distances and small peak diameters. M – < ω ), thin walls (t < 1mm), lengthy inter–peak distances and smaller peak diameters. It is concluded that, egg–box structures combined in the form of sandwich panels can be designed per application to act as optimised energy absorbers. Results of the proposed optimised sandwich structure are verified using analytical techniques.
8

Intersection Safety Analysis Methodology for Utah Roadways

Gibbons, Joshua Daniel 01 May 2018 (has links)
Roadway safety continues to be a priority for the Utah Department of Transportation (UDOT) Traffic and Safety Division. UDOT has participated in and managed several research projects in recent years to determine the roadway segments of highest safety concern in the state. This research has provided UDOT with more tools to assist in safety project prioritization. Researchers in Department of Civil and Environmental Engineering at Brigham Young University (BYU) have worked with UDOT and the Statistics Department at BYU to create two network screening statistical tools called the Utah Crash Prediction Model (UCPM) and the Utah Crash Severity Model (UCSM) to analyze roadway segment safety. The Roadway Safety Analysis Methodology (RSAM) was developed as a process to run these segment models. Because a significant portion of crashes occur at intersections, there is a need to analyze roadway safety specifically at intersections. This research focuses on the development of the Utah Intersection Crash Prediction Model (UICPM) and the Intersection Safety Analysis Methodology (ISAM). The UICPM is a Bayesian generalized linear model that determines crash distributions for each intersection based on roadway characteristics and historical crash data. The observed number of crashes at each intersection is compared with the crash distribution, and a percentile value is calculated as the probability that the number of crashes occurring at an intersection in a particular year is less than or equal to the average annual number of crashes. A high percentile value indicates that more crashes were observed than expected and the intersection is a hot spot and should be considered for safety improvements. All intersections are ranked at the state, UDOT Region, and county levels based on the percentile value, the higher ranks having higher percentile values. The ISAM is the three-step process that was developed to execute the UICPM. The first step is to prepare the model input by formatting and combining the roadway characteristics and crash data files. Crashes are assigned to intersections if they fall with the functional area of an intersection. Due to data limitations, the ISAM is currently being used only for intersections of at least two state routes. It is anticipated that, as more data are made available, the ISAM will function properly for intersections of non-state routes as well. The second step is to execute the UICPM using the R GUI tool and R software. The third step is to create a two-page Intersection Safety Analysis Report (ISAR) for intersections of interest and maps of the state, UDOT Regions, and counties with the model results. Parts of the ISARs are auto-generated and the rest is entered manually by an analyst. The two-page ISARs will be used by UDOT Regions to prioritize intersection safety projects in their respective areas.
9

Roadway Safety Analysis Methodology

Mineer, Samuel Thomas 01 May 2016 (has links)
The Utah Department of Transportation (UDOT) Traffic and Safety Division continues to advance the safety of the state roadway network through network screening and decision making tools. In an effort to aid UDOT in meeting this goal, the Department of Civil and Environmental Engineering at Brigham Young University (BYU) has worked with the Statistics Department in developing analysis tools for highway safety, specifically the Utah Crash Prediction Model (UCPM) and the Utah Crash Severity Model (UCSM). Additional tools and methodologies, such as the "Hot Spot Identification and Analysis," have been created to summarize the roadway characteristics, crash data, and possible countermeasures of roadway segments with safety problems.This research focuses on the creation of a three part "Roadway Safety Analysis" methodology, which applies and automates the cumulative work of recently completed highway safety research conducted for UDOT. The first part is to prepare the roadway data and crash data for the statistical analysis. The second part is to perform the network screening statistical analysis; rank the segments by state, UDOT Region, and county; and select segments of interest. The third part is to compile and publish the Roadway Safety Analysis reports for the selected segments of interest. These parts are accomplished using the automation tools and graphical user interfaces (GUIs), which are documented in three respective volumes of user manuals. The automation tools and GUIs were developed with checks and processes to allow the Roadway Safety Analysis methodology to be completed with new, updated roadway and crash datasets.The Roadway Safety Analysis methodology allows future iterations of the UCPM and UCSM analysis and compilation of the Roadway Safety Analysis reports to be conducted in a user friendly environment. A series of critical data columns were identified to communicate the need for data consistency for future iterations of this safety research. An example of the entire process of the Roadway Safety Analysis methodology is given to illustrate how the three parts tie together. The overall process has automated data processing tasks, which saves time and resources for the analyst to investigate possible safety measures for segments of interest. Recommendations for future highway safety research are given, including continued development of the Roadway Safety Analysis methodology, an analysis of intersections and horizontal curves, the implementation of the Roadway Safety Analysis methodology to other states, and the advancement of safety countermeasures and geospatial tools for highway safety research.
10

Finite Element based Parametric Studies of a Truck Cab subjected to the Swedish Pendulum Test

Engström, Henrik, Raine, Jens January 2007 (has links)
<p>Scania has a policy to attain a high crashworthiness standard and their trucks have to conform to Swedish cab safety standards. The main objective of this thesis is to clarify which parameter variations, present during the second part of the Swedish cab crashworthiness test on a Scania R-series cab, that have significance on the intrusion response. An LS-DYNA FE-model of the test case is analysed where parameter variations are introduced through the use of the probabilistic analysis tool LS-OPT.</p><p>Example of analysed variations are the sheet thickness variation as well as the material variations such as stress-strain curve of the structural components, but also variations in the test setup such as the pendulum velocity and angle of approach on impact are taken into account. The effect of including the component forming in the analysis is investigated, where the variations on the material parameters are implemented prior to the forming. An additional objective is to analyse the influence of simulation and model dependent variations and weigh their respective effect on intrusion with the above stated physical variations.</p><p>A submodel is created due to the necessity to speed up the simulations since the numerous parameter variations yield a large number of different designs, resulting in multiple analyses.</p><p>Important structural component sensitivities are taken from the results and should be used as a pointer where to focus the attention when trying to increase the robustness of the cab. Also, the results show that the placement of the pendulum in the y direction (sideways seen from the driver perspective) is the most significant physical parameter variation during the Swedish pendulum test. It is concluded that to be able to achieve a fair comparison of the structural performance from repeated crash testing, this pendulum variation must be kept to a minimum. </p><p>Simulation and model dependent parameters in general showed to have large effects on the intrusion. It is concluded that further investigations on individual simulation or model dependent parameters should be performed to establish which description to use. </p><p>Mapping material effects from the forming simulation into the crash model gave a slight stiffer response compared to the mean pre-stretch approximations currently used by Scania. This is still however a significant result considering that Scanias approximations also included bake hardening effects from the painting process. </p>

Page generated in 0.0378 seconds