Spelling suggestions: "subject:"credit analysis - corporations"" "subject:"credit analysis - orporations""
1 |
Modelo ajustado de credit scoring para an??lise de risco de companhias no segmento de m??dio porte no BrasilAra??jo, Eudes Martins de 31 March 2015 (has links)
Made available in DSpace on 2015-12-03T18:33:13Z (GMT). No. of bitstreams: 1
Eudes_Martins_de_Araujo.pdf: 471826 bytes, checksum: 3fa94e3e0d87a5b29960d321fc0f5277 (MD5)
Previous issue date: 2015-03-31 / The objective of this work is to verify if the credit rating model proposed by Brito and Assaf Neto (2008) designed for publicly held companies may also be applied to privately held companies in Brazil. In this work, 60 companies were used, being 30 of them in bankruptcy or insolvency processes in the period from 1994 to 2004, herein referred to as insolvent companies, and 30 of them with normal economic and financial situation referred here as solvent companies. In the present study, 60 companies were used; 30 of them presenting financial restrictions during the year of 2013 and 30 having a normal economic and financial situation. The model proposed by Brito and Assaf Neto (2008) used a logistic regression with 25 economic and financial indicators to see if they were able to separate solvent companies from non-solvent companies. Out of the 25 indicators used for this study, only 4 of them were statistically significant, namely: (I) retained profits on assets, (ii) financial debt, (III) net working capital and (IV) cash balance on sales. This four-variable model obtained a 90% accuracy in the correct classification of solvent and insolvent companies. However, the logistic regression model estimated based on the data from private companies showed different results from the one estimated by Brito and Assaf Neto (2008).In this case, only two variables showed to be statistically significant: (I) equity on assets and (II) cash balance on sales. This adjusted model reached a 57% accuracy in correctly classifying the companies. In short, the results presented here showed that it was not possible to estimate the adjusted credit-scoring model with a good accuracy for privately held companies in Brazil this based on extracted data from their financial statements. / O objetivo neste trabalho ?? verificar se o modelo de classifica????o de risco de cr??dito proposto por Brito e Assaf Neto (2008) desenvolvido para companhias de capital aberto tamb??m pode ser aplicado as companhias de capital fechado no Brasil. Nele foram utilizadas 60 companhias, sendo 30 com processos de concordata ou fal??ncia no per??odo de 1994 a 2004 denominadas insolventes e 30 com situa????o econ??mico-financeira normal denominadas solventes. No estudo aqui desenvolvido, tamb??m foram utilizadas 60 companhias; 30 apresentando restritivos financeiros durante o ano de 2013 e 30 com situa????o econ??mico-financeira normal. O modelo proposto por Brito e Assaf Neto (2008) utilizou uma regress??o log??stica com 25 indicadores econ??mico-financeiros para verificar se eles eram capazes de separar companhias solventes de companhias insolventes. Dos 25 indicadores utilizados, apenas 4 deles apresentaram signific??ncia estat??stica, sendo eles: (I) lucros retidos sobre ativo, (II) endividamento financeiro, (III) capital de giro l??quido e (IV) saldo de tesouraria sobre vendas. Esse modelo com quatro vari??veis obteve uma acur??cia de 90% nas classifica????es corretas das companhias abertas solventes e insolventes. No entanto, o modelo de regress??o log??stica estimado com base nos dados das companhias de capital fechado mostrou resultados distintos daquele estimado por Brito e Assaf Neto (2008). Nesse caso, apenas duas vari??veis se mostraram estatisticamente significantes: (I) patrim??nio l??quido sobre ativo e (II) saldo de tesouraria sobre vendas. Esse modelo ajustado obteve uma acur??cia de apenas 57% nas classifica????es corretas das companhias. Em suma os resultados aqui relatados mostraram que n??o foi poss??vel estimar um modelo ajustado de credit scoring com boa acur??cia para companhias de capital fechado no Brasil com base em dados extra??dos de suas demonstra????es financeiras.
|
Page generated in 0.1049 seconds