• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 341
  • 140
  • 95
  • 60
  • 39
  • 17
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • Tagged with
  • 907
  • 149
  • 144
  • 137
  • 108
  • 99
  • 91
  • 89
  • 85
  • 83
  • 74
  • 73
  • 72
  • 62
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Temperature, stress, and strength development of early-age bridge deck concrete

Pesek, Phillip Wayne 30 September 2011 (has links)
In bridge deck concrete, early-age cracking can lead to substantial serviceability and structural integrity issues over the lifespan of the bridge. An understanding of the temperature, stress, and strength development of concrete can aid determining the early-age cracking susceptibility. This project, funded by the Texas Department of Transportation, evaluated these properties for various bridge deck materials and mixture proportions. The research presented in this thesis involved a laboratory testing program that used a combination of semi-adiabatic calorimetry, rigid cracking frame, free shrinkage frame, and match cured cylinder testing program that allowed the research team to simulate the performance of common bridge deck mixture designs under hot and cold weather conditions. In this program, the semi-adiabatic calorimetry was used, with previously generated models, to generate the temperature profile of the mixture. The rigid cracking frame and free shrinkage frame were used to evaluate the restrained stress development and the unrestrained volume changes, respectively, under the simulated temperatures. The match-cure cylinder testing program allowed the research team to generate a strength development profile for the concrete mixtures under the various simulated temperature profiles. Results from the laboratory program revealed that in hot weather simulations, ground granulated blast furnace slag mixtures developed the lowest stress / strength ratios, and in cold weather simulations, Class F fly ash mixtures developed the lowest stress / strength ratios. In general, use of SCMs and limestone coarse aggregate results in mixtures that generate less heat and lower stress / strength ratios. Isothermal testing showed that shrinkage reducing admixtures were effective in reducing early-age strains from chemical shrinkage. In addition to the laboratory testing program, a field testing program was completed to measure the temperature development of four bridge decks during the winter and summer months. The recorded concrete temperatures and the effects of the environmental conditions at the time of the pour will aid in the calibration and validation of the temperature prediction component of ConcreteWorks for bridge deck construction. In addition, experience gained through these field pours resulted in an optimized instrumentation procedure that will aid in the successful collection of data in future projects. / text
422

Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems

Aguiniga Gaona, Francisco 30 September 2004 (has links)
Corrosion of steel reinforcement in concrete structures results in significant repair and rehabilitation costs. In the past several years, new fiber reinforced polymer (FRP) reinforcing bars have been introduced as an alternative to steel reinforcing bars. Several national and international organizations have recently developed standards based on preliminary test results. However, limited validation testing has been performed on the recommendations of these standards. High variability of the tensile properties, degradation of tensile strength, direct shear capacity, predicted deflections due to creep, cracking behavior of FRP-reinforced concrete flexural members, bond behavior and development length, and effects of thermal expansion on cracking of FRP reinforced concrete have all been reported, but are areas that need further investigation and validation. The objective of this study is to evaluate the characteristics of glass FRP reinforcing bars and provide recommendations on the design and construction of concrete structures containing these bar types with regard to the areas described. The recently developed ACI 440 design guidelines were analyzed and modifications proposed.
423

Creep Behaviour of Post-Installed Adhesive Anchors under Various Sustained Load Levels and Environmental Exposures

El Menoufy, Adham Mohamed 08 1900 (has links)
This thesis describes an experimental study on the long-term creep behaviour of adhesive anchors under sustained tensile loads in combination with different environmental exposures. A comprehensive background and literature review is presented, focusing on various bond stress models for adhesive anchors, factors affecting their bond behavior, and an overview of available testing standards and evaluation criteria. The experimental program comprises of 82 test specimens. The specimens consist of a cylindrical shaped concrete block of 300 mm (12 inch) in diameter and 200mm (8 inch) in depth, with 15M (No. 5) deformed steel bar post-installed to an embedment depth of six times the bar diameter or 125mm (5 inch). Three types of adhesives were used for anchor installation: Type-A a fast setting two component methyl methacrylate adhesive, Type-B a fast setting two part epoxy adhesive, and Type-C a standard set two part epoxy adhesive. The study is divided into four phases. Phase I consists of 27 static pullout tests to determine the yield strength (fy) and the maximum tensile capacity of each anchor system under three exposure conditions. Phase II and Phase III consist of 36 specimens tested under sustained load levels of 40%fy (32kN) and 60%fy (48kN)under normal laboratory conditions (room temperature) and moisture exposure, respectively. Phase IV consists of 9 specimens tested under sustained load with a load level of 40%fy (32kN) with exposure to freeze/thaw cycling. All sustained load tests lasted for a period of at least 90 days. The results of the static pullout testing showed that specimens with epoxy based adhesive exhibited stronger bond strength, forcing the anchor to fail by rupture prior to bond failure. Under sustained load testing, specimens with standard set epoxy based adhesive showed insignificant creep displacement under room conditions, however, when exposed to moisture noticeable creep displacements were recorded. Specimens with both fast setting epoxy and methyl methacrylate based adhesives showed higher creep displacements under environmental exposure (moisture, freeze/thaw) versus those kept at room temperature. Displacement data from creep testing were analysed and projected over a service life span of 50 years for room temperature exposure, and for 10 years for moisture and freeze/thaw exposures. Based on the analysis results, the service life of different anchor systems was estimated. An integrated qualification and testing protocol is proposed for the creep behavior of adhesive anchors under various environmental exposures.
424

Shrinkage Influence on Tension-Stiffening of Concrete Structures / Susitraukimo įtaka gelžbetoninių elementų tempiamosios zonos elgsenai

Gribniak, Viktor 02 November 2009 (has links)
Due to the use of refined ultimate state theories as well as high strength concrete and reinforcement, resulting in longer spans and smaller depths, the serviceability criteria often limits application of modern reinforced concrete (RC) superstructures. In structural analysis, civil engineers can choose between traditional design code methods and numerical techniques. In order to choose a particular calculation method, engineers should be aware of accuracy of differ-ent techniques. Adequate modelling of RC cracking and, particularly, post-cracking behaviour, as one of the major sources of nonlinearity, is the most im-portant and difficult task of deformational analysis. In smeared crack approach dealing with average cracking and strains, post-cracking effects can be modelled by a stress-strain tension-stiffening relationship. Most known tension-stiffening relationships have been derived from test data of shrunk tension or shear mem-bers. Subsequently, these constitutive laws were applied for modelling of bend-ing elements which behaviour differs from test members. Furthermore, such re-lationships were coupled with shrinkage effect. Therefore, present research aims at developing a technique for deriving a free-of-shrinkage tension-stiffening re-lationship using test data of shrunk bending RC members. The main objective of this PhD dissertation is to investigate shrinkage influence on deformations and tension-stiffening of RC members subjected to short-term loading. Present... [to full text] / Pastaraisiais metais vis plačiau taikant stiprųjį betoną bei armatūrą, konst-rukcijų perdengiamos angos didėja, o skerspjūviai mažėja. Todėl projektuojant standumo (įlinkių) sąlyga vis dažniau tampa lemiamu veiksniu. Inžinieriai gelž-betoninių konstrukcijų apskaičiavimams gali taikyti empirinius normų arba skai-tinius metodus. Vieno ar kito skaičiavimo metodo parinkimas turi būti pagrįstas statistiniais tikslumo analizės rezultatais. Yra žinoma, kad adekvatus gelžbetoninio elemento pleišėjimo (ypač plyšių vystymosi stadijos) modeliavimas yra vienas sudėtingiausių netiesinės mechani-kos uždavinių. Toks uždavinys gali būti išspręstas taikant vidutinių plyšių kon-cepciją, kai pleišėjimo proceso modeliavimui naudojama tempiamojo betono vidutinių įtempių ir deformacijų diagrama. Dauguma tokių diagramų gautos, naudojant tempimo arba šlyties bandymo rezultatus. Pabrėžtina, kad šių diagra-mų taikymas lenkiamųjų gelžbetoninių elementų modeliavime duoda nemažas paklaidas. Kitas svarbus aspektas yra tai, kad gelžbetoniniuose bandiniuose, iki juos apkraunant trumpalaike apkrova, vyksta betono susitraukimas. Šiame darbe buvo siekiama sukurti metodą, leidžiantį pagal eksperimentinius lenkiamųjų gelžbetoninių elementų duomenis gauti tempiamojo betono vidutinių įtempių ir deformacijų diagramas, įvertinant betono susitraukimo įtaką. Pagrindinis diser-tacijos tikslas yra įvertinti ikieksploatacinių betono susitraukimo ir valkšnumo poveikį gelžbetoninių elementų, apkrautų trumpalaike apkrova... [toliau žr. visą tekstą]
425

Susitraukimo įtaka gelžbetoninių elementų tempiamosios zonos elgsenai / Shrinkage Influence on Tension-Stiffening of Concrete Structures

Gribniak, Viktor 02 November 2009 (has links)
Pastaraisiais metais vis plačiau taikant stiprųjį betoną bei armatūrą, konst-rukcijų perdengiamos angos didėja, o skerspjūviai mažėja. Todėl projektuojant standumo (įlinkių) sąlyga vis dažniau tampa lemiamu veiksniu. Inžinieriai gelž-betoninių konstrukcijų apskaičiavimams gali taikyti empirinius normų arba skai-tinius metodus. Vieno ar kito skaičiavimo metodo parinkimas turi būti pagrįstas statistiniais tikslumo analizės rezultatais. Yra žinoma, kad adekvatus gelžbetoninio elemento pleišėjimo (ypač plyšių vystymosi stadijos) modeliavimas yra vienas sudėtingiausių netiesinės mechani-kos uždavinių. Toks uždavinys gali būti išspręstas taikant vidutinių plyšių kon-cepciją, kai pleišėjimo proceso modeliavimui naudojama tempiamojo betono vidutinių įtempių ir deformacijų diagrama. Dauguma tokių diagramų gautos, naudojant tempimo arba šlyties bandymo rezultatus. Pabrėžtina, kad šių diagra-mų taikymas lenkiamųjų gelžbetoninių elementų modeliavime duoda nemažas paklaidas. Kitas svarbus aspektas yra tai, kad gelžbetoniniuose bandiniuose, iki juos apkraunant trumpalaike apkrova, vyksta betono susitraukimas. Šiame darbe buvo siekiama sukurti metodą, leidžiantį pagal eksperimentinius lenkiamųjų gelžbetoninių elementų duomenis gauti tempiamojo betono vidutinių įtempių ir deformacijų diagramas, įvertinant betono susitraukimo įtaką. Pagrindinis diser-tacijos tikslas yra įvertinti ikieksploatacinių betono susitraukimo ir valkšnumo poveikį gelžbetoninių elementų, apkrautų trumpalaike apkrova... [toliau žr. visą tekstą] / Due to the use of refined ultimate state theories as well as high strength concrete and reinforcement, resulting in longer spans and smaller depths, the serviceability criteria often limits application of modern reinforced concrete (RC) superstructures. In structural analysis, civil engineers can choose between traditional design code methods and numerical techniques. In order to choose a particular calculation method, engineers should be aware of accuracy of differ-ent techniques. Adequate modelling of RC cracking and, particularly, post-cracking behaviour, as one of the major sources of nonlinearity, is the most im-portant and difficult task of deformational analysis. In smeared crack approach dealing with average cracking and strains, post-cracking effects can be modelled by a stress-strain tension-stiffening relationship. Most known tension-stiffening relationships have been derived from test data of shrunk tension or shear mem-bers. Subsequently, these constitutive laws were applied for modelling of bend-ing elements which behaviour differs from test members. Furthermore, such re-lationships were coupled with shrinkage effect. Therefore, present research aims at developing a technique for deriving a free-of-shrinkage tension-stiffening re-lationship using test data of shrunk bending RC members. The main objective of this PhD dissertation is to investigate shrinkage influence on deformations and tension-stiffening of RC members subjected to short-term loading. Present... [to full text]
426

DESIGN AND TESTING OF LOW DIVERGENCE ELLIPTICAL-JET NOZZLES FOR USE IN CREEP-FEED GRINDING

Rouly, Ovey Etienne 02 December 2013 (has links)
A novel method was developed to design and fabricate nozzles capable of producing low-divergence fluid jets. Nozzle apertures were elliptical, and jets exhibited elliptical cross-sections with divergence varying predictably between 0 and 13°. Nozzle aperture aspect ratios varied from 1.00 to 2.45, area was equivalent to that of a 6mm diameter circle. An elliptical jet was developed with 0.4° and 0.9° divergence in the major and minor axes, respectively. Performance of this elliptical nozzle was compared to that of a circular nozzle via profiled creep-feed grinding trials. Results indicate the circular nozzle performs similarly to the horizontal ellipse; the vertical ellipse frequently caused wheel breakdown. Optimized cutting parameters: wheel speed 23m/s, cut depth 1.78mm, feed rate 200mm/min, jet pressure 3.21MPa or greater. Experiments were performed on a Blohm Planomat 408 CNC grinding machine using CimTech 310 cutting fluid. Nozzle experiments used a Brix concentration of 6.1%, grinding experiments used 3.1%.
427

The influence of sulphidizing attack on the mechanism of failure of coated superalloy under cyclic loading conditions.

Govender, Gonasagren. January 1998 (has links)
A systematic study of the effect of sulphidizing atmosphere on the High Temperature Low Cycle Fatigue (HTLCF) properties of coated and uncoated unidirectionally solidified MARM002 nickel base superalloy was performed at 870°C. The coating systems investigated were, aluminide coating, three types of platinum modified aluminide coatings, and platinum coating. The creep-plasticity mode of the strain range partitioning method was used for creep-fatigue loading. A constant loading regime (Strain range 6.6 x 10-3 ) was used to test the samples in argon, air and Ar + 5%S02 and a lower strain range of3.8 x 10-3 was used to investigate the creep-fatigue properties in Ar + 5%S02 only. The results were analysed using scanning electron microscopy including spot analyses (SEM-EDS), Auger electron spectroscopy (AES) and X-ray diffraction (XRD) techniques. The synergistic effect of sulphidizing environment and the creep fatigue loading (Strain range - 0.66%) resulted in accelerated failure in all the materials systems tested, except for the TYPE I platinum aluminide coated sample. This coating displayed a "self-healing" mechanism which enhanced its fatigue life under sulphidizing conditions. In general, the coatings had an adverse effect on the fatigue properties of the material systems. This was due to the poor mechanical properties of the coating. The mechanical properties of the coating was influenced by the coating microstructure and the chemical composition. The modification of the NiAI zone with platinum in the platinum aluminide coatings improved the fatigue properties of the coating by altering the crack propagation mechanism in the NiAl zone. The higher the platinum content in this region the more brittle it became. The platinum modified aluminide coating showed an improvement in the corrosion fatigue properties in the S02 containing environment at the higher strain range when compared with the uncoated, aluminide coated and platinum coated samples. However, at the lower strain range all the coating systems performed worse than the uncoated alloy. This was mainly due to the brittle failure of the coating. The platinum modified aluminides performed the worst due to the presence of brittle platinum aluminide phases. The interdiffusion and interaction of platinum with the substrate alloying elements, resulted in this coating being ineffective for corrosion protection. The resultant coating layer produced poor corrosion-fatigue properties. Although the coating systems did show evidence of resistance to sulphidation and oxidation there were relatively ineffective under the combination of sulphidizing environment and fatigue loading due to their poor mechanical properties. The mechanism of sulphidation was consistent for all the material systems tested with oxidation proceeding first and sulphidation proceeding at the corrosion scale/substrate interface. The crack propagation in the coating and substrate was controlled by the sulphidation attack at the crack tip and failure of the oxide scales formed in the cracks. / Thesis(M.Sc.Eng.)- University of Natal, Durban, 1998.
428

Development of parametric finite element modelling methods for nonwoven materials including rate dependent material behaviour

Sabuncuoglu, Baris January 2012 (has links)
Thermally bonded nonwovens are low-price substitutes for traditional textiles. They are used in many areas including filtration, automotive and aerospace industries. Hence, understanding deformation behaviours of these materials is required to design new products tailored for specific applications in different areas. Because of their complex and random structure, numerical simulations of nonwoven materials have been a challenging task for many years. The main aim of the thesis is to develop a computational modelling tool to simulate the effect of design parameters on structural behaviour of low-density nonwoven materials by using a finite element method. The modelling procedure is carried out with a parametric modelling technique, which allows a designer to run a series of analyses with different design parameters and observe the effects of these parameters on the mechanical behaviour of nonwoven materials. The thesis also presents the study of rate dependent behaviour of nonwoven fibres. Novel test and data-interpretation procedures are proposed to determine the creep behaviour of fibres in the nonwoven structure. Some case studies are presented to demonstrate the effectiveness of the model. The developed computational tool allows macro and micro-scale structural investigation of nonwoven materials. Two additional studies are presented, performed with the developed tool. In the first study, the effect of design parameters on tensile stiffness of nonwovens was determined by performing numerical analyses with various nonwoven models. In the second one, strain distribution in fibres is studied thoroughly together with factors affecting the distribution. The models, developed in the thesis can also be employed in further studies of nonwovens, such as investigation of their damage and fracture behaviour.
429

Termomekanisk utmattning av Sanicro 25 : Materialmodellering med finita elementmetoden / Thermomechanical fatigue of Sanicro 25 : Material modeling using the finite element method

Karjalainen, Marcus, Klarholm, David January 2014 (has links)
The report aims to describe the austenitic stainless steel Sanicro 25 from a thermomechanical point of view. The thermal and mechanical properties of the material make it suitable for use in coal – and thermal power plants. By the use of Sanicro 25 it would be possible to bring the efficiency of these plants up while bringing the carbon emissions down.A material model is created from material testing and validated through simulation in the finite element software Abaqus. The model that has been derived describes the material behavior during loading and stress relaxation for the first cycle in a thermomechanical fatigue test well. The unloading part of the cycle however cannot be described correctly by the use of this model. / Rostfritt
430

Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM).

Grant, Colin, A., Alfouzan, Abdulrahman, Twigg, Peter C., Coates, Philip D., Gough, Timothy D. 2012 June 1920 (has links)
Visco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness = 100 m) is highly sensitive to temperature over an experimental temperature range of 22¿175 ¿C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22 ¿C to 100 ¿C, with the most rapid rise occurring above the glass-to-rubber transition temperature (Tg = 77.1 ¿C). At higher temperatures, close to the crystallisation temperature (Tc = 134.7 ¿C), the indentation creep reduced to levels similar to those at temperatures below Tg. The calculated relaxation time showed a similar temperature dependence, rising from 0.6 s below Tg to 1.2 s between Tg and Tc and falling back to 0.6 s above Tc. Whereas, the recorded modulus of the thick polymer film decreases above Tg, subsequently increasing near Tc. These visco-elastic parameters are obtained via mechanical modelling of the creep curves and are correlated to the thermal phase changes that occur in PET, as revealed by differential scanning calorimetry (DSC).

Page generated in 0.1306 seconds