Spelling suggestions: "subject:"cross linked"" "subject:"gross linked""
11 |
Non-intrusive condition monitoring of power cables within the industrial sector / Johannes Hendrik van JaarsveldtVan Jaarsveldt, Johannes Hendrik January 2015 (has links)
Condition monitoring (CM) of electrical equipment is an important field in electrical engineering and a
considerable amount of research is dedicated to this field. Power cables are one of the most important parts
of any electrical network and the variety of techniques available for CM of electrical cables is therefore no
surprise. Electrical cables are exposed to operational and environmental stressors which will cause
degradation of the insulation material. The degradation will continue to the point where the cable fails.
Blackouts caused by failing cables will have an effect on the safety, efficiency and production of an
electrical network. It is therefore important to constantly monitor the condition of electrical cables, in order
to prevent the premature failure of cables. The research presented in this dissertation sets out to investigate
CM techniques for power cables and to design and implement a basic cable CM technique based on the
principles of partial discharge (PD) measurements.
A comprehensive literature study introduces the fundamental concepts regarding the CM of power cables.
The basic construction of electrical cables, as well as the variety of different types is researched in order to
lay a foundation for the research that follow. CM techniques for electrical equipment are investigated, with
the emphasis on techniques used on cables. Conducted research led to the decision to focus on CM by
means of PD measurements. PD as a phenomenon is investigated to be able to better understand the origins
and effects of discharge activity. From there the focus shifts to the available techniques for monitoring the
condition of electrical cables by means of PD measurements. The research conducted in the literature study
chapter forms the basis from which the rest of the study is conducted.
Simulation models were used to study PD characteristics. The models are derived from engineering and
mathematical principles and are based on the well-known three-capacitor model of PD. The simulations
were performed in order to study the effects of discharge activity. The designed simulation models allows
for a variety of PD characteristics to be studied. The simulations were performed in the MATLAB®
Simulink® environment.
The research conducted in the dissertation was used to design an elementary CM technique which can be
used to detect the presence of PD within electrical cables. The designed CM technique was used for the
practical measurement of PD data. MATLAB® programs were designed in order to analyse the PD data in
both the time- and frequency-domain. The analysis of the measured data revealed PD characteristics of the
test specimen used for the measurements. The designed CM is used for the detection of PD activity within
electrical cables and in combination with other techniques, may be used for complete CM of electrical
cables. The experimental setup which was used to take practical PD measurements adds another dimension
to the work presented in this dissertation. / MIng (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
12 |
Preparation Of Cross-linked Tyrosinase AggregatesAytar, Burcu Selin 01 June 2006 (has links) (PDF)
ABSTRACT
PREPARATION OF CROSS-LINKED TYROSINASE AGGREGATES
Aytar, Burcu Selin
M.S., Department of Chemical Engineering
Supervisor: Prof. Dr. Ufuk Bakir
June 2006, 82 pages
The aim of this study was to prepare cross-linked enzyme aggregate (CLEA) from crude mushroom (Agaricus bisporus) extract. However, the optimization of CLEA production was performed by using pure tyrosinase. Important parameters were determined as protein, ammonium sulfate and glutaraldehyde concentrations, CLEA particle size, and cross-linking temperature and period. On the other hand, the order of ammonium sulfate and glutaraldehyde addition did not affect the yield of CLEA. Optimum CLEA preparation conditions were 60 % ammonium sulfate saturation, 2 % (v/v) glutaraldehyde, and 3 hour cross-linking reaction at room temperature. Particle size of the CLEAs should be reduced by mechanical stirring to eliminate mass transfer limitations. Under these circumstances, 100 % recovery was obtained from both pure and crude tyrosinases. Optimum temperature and the activation energy for catechol oxidation were determined as 34 oC and 16.9 kcal/mol for CLEAs, whereas, 32 oC and 12.5 kcal/mol for the free enzyme. Furthermore, the thermostability of CLEAs was significantly higher than the free enzyme. CLEAs, prepared from crude mushroom extract, retained 72 % of its maximum activity in eight months storage at 4 oC. Moreover, changing the storage temperature from 4 oC to room temperature did not decrease CLEAs stabilities.
|
13 |
Determination Of Phenolics Concentration Using Cross-linked Phenol Oxidase AggregatesErturk, Bedriye Durhan 01 June 2008 (has links) (PDF)
The main object of the presented study was investigation of the use of cross-linked
enzyme (tyrosinase) aggregates (CLTA) obtained from crude mushroom extract for a
rapid phenolic content analysis in wines. In addition, a comparison of phenolic
characteristics of Turkish red wines was performed. Reproducible and reliable results
in total phenolic measurement were obtained with CLTAs similar to pure tyrosinase
and tyrosinase obtained from crude mushroom extract. Measurement of total
phenolic content is possible both in standard solutions and in complex matrices, such
as wine. In a very short time period, 10 seconds, phenolics content in red and white wines produced from grapes of Turkey were investigated by using CLTAs. Results were consistent when compared to a well known phenolic measurement method, Folin-Ciocalteau. CLTAs exhibited very high operational stability and retained more than 90% of its activity after 30th use. Moreover, it showed good shelf-life stability for about 2 months storage by maintaining 90% of its maximum activity. So, use of CLTAs prepared from crude mushroom extract is an effective, fast and cheap alternative in total phenolics measurements in wines. Moreover, a novel catalase phenoloxidase (CATPO) produced by a fungal microorganism, Scytalidium thermophilum, was studied to check its capabilities in phenolics measurements. This novel catalase phenol oxidase showed similarly good results, exhibiting widesubstrate selectivity.
|
14 |
Functionalized Crosslinked Matrices And Counter-Ion Crosslinked Surfactant SystemsPaul, Geeta Kheter 01 1900 (has links) (PDF)
No description available.
|
15 |
Numerické modelování chování částicového kompozitu se sesíťovanou polymerní matricí / Numerical modeling of behavior of a particle composite with crosslinked polymer matrixMáša, Bohuslav January 2011 (has links)
The master's thesis deals with the determination of macroscopic behavior of a particulate composite with cross-linked polymer matrix under tensile load. The main focus of thesis is estimation of mechanical properties of a composite loaded by tensile loading using numerical methods (especially finite elements method). Investigated composite is composed of matrix in a rubbery state filled by alumina-based particles (Al2O3). Hyperelastic properties of the matrix have been modeled by the Mooney-Rivlin material model. Different compositions of particles, their different shape, orientation and different volume fractions have been considered. For all these characteristics of composite numerical models have been developed. The damage mechanisms of the matrix have also been taken into account. Results of numerical analyses have been compared with experimental data and good agreement between numerical models with damage mechanisms of matrix and experimental data has been found.
|
16 |
Complex Macromolecular Architectures by Living Cationic PolymerizationAlghamdi, Reem D. 05 1900 (has links)
Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or “grafting-onto” methodologies, which yielding in well-defined PVEs segments with control Mn(GPC) = [VE]/[initiator] and narrow MWDs.
|
17 |
Synthesis and Study of Chemo-Hydrothermally Derived Water-Soluble Chitosan and Chiosan-Metal Oxide CompositesBasumallick, Srijita 01 January 2014 (has links)
Chitosan (CS) is a man-made sugar based biopolymer derived from chitin, the second most abundant natural polymer after cellulose. Chitin is sourced from crustacean species such as shrimps and crabs. The chemical structure of chitin contains N-Acetyl D-glucosamine monomer units which forms CS upon deacetylation. In CS, ?-(1-4) linked D-glucosamine units are randomly distributed. Approximately 75% - 80% sugar units contains primary amine groups in commercially available low molecular weight CS. Biodegradability, low toxicity, mucoadhesive and transfecting properties of CS polymer are attractive for applications as oral and nasal drug delivery systems. Chitosan polymer is water insoluble at neutral pH. To solubilize CS, dilute mineral acid (such as hydrochloric acid and nitric acid) or organic acid (such as acetic acid) is often used. CS contains both hydroxyl and primary amine groups in its structure. In acidic solution, the amine functional groups become protonated (positively charged). Positively charged CS remains stable only in low pH condition due to electrostatic repulsion of charged polymer segments. Therefore, by using a suitable anionic (negatively charged) cross-linker, stable CS particles (such as nanoparticles and microspheres) can be prepared. This is popularly known as ionic gelation method. Extensive studies have been done on the synthesis of drug loaded CS particles where particle integrity is maintained by ionic gelation using tripolyphosphate (TPP, an anionic cross-linker). Drug encapsulated CS-TPP composite particles are shown to maintain biodegradability and biocompatibility. The CS-TPP composite particles exhibits very limited dispersibility at neutral pH conditions specifically in neutral buffered conditions. A number of biomedical applications (including systemic drug formulations) however demands buffer-stable CS composite particles for achieving optimal therapeutic outcome. To overcome the above dispersibility issues, CS polymer and CS particles units have been chemically modified using water soluble motifs (such as water soluble polymer or ligands). This approach is very cumbersome and usually involves multiple purification steps. Chemical modification of natural CS chain introduces risks of compromising biodegradability and biocompatibility. Therefore, there is a strong need for developing a straightforward method of making water soluble CS and CS particles. Chapter 1 of this dissertation presents an overview of the CS polymer, various applications of CS polymers, methods of making CS polymers and CS particles, current limitations of synthesis methods for preparing stable chitosan particles at neutral pH conditions and finally delineates the scope of the proposed research work. Chapter 2 describes development of chemo-hydrothermal synthesis method for producing water soluble CS polymer and water dispersible CS composite particles. In this method, a chemical (depolymerizing agent) is used to treat CS polymer in a hydrothermal (high temperature and high pressure) condition. Two types of depolymerizing agents have been used, an inorganic acid (e.g. hydrochloric acid, HCl) and a bicarboxylic organic acid (e.g. tartaric acid, TA). In both cases, 100% depolymerized CS polymer was obtained. Chemical characteristics of the depolymerized CS were comparable to acid solubilized CS. CS polymer exhibits weak fluorescence. Interestingly, hydrothermally depolymerized CS shows strong fluorescence properties irrespective of the nature of depolymerizing agent used. TA not only depolymerized CS but also formed CS-TA composite particulate structures in solution via self-assembly. The CS-TA composite particles are stable in a wide pH range from 5 to 11. Detailed spectroscopic and microscopic studies have been done to understand the basic mechanism of particle formation and increase in fluorescence properties (i.e. structure-property relationship). Usefulness of CS-TA in solubilizing water-insoluble cargos (such as fluorescein isothiocyanate, FITC) has been demonstrated. Chapter 3 is focused on hydrothermal synthesis of mixed-valence copper (Cu) oxide loaded CS-TA composite particles and their characterization. Crystalline Cu oxide nanoparticles were coated with the CS-TA layer. Water dispersibility of Cu oxide greatly improved upon coating with CS-TA material. To demonstrate catalytic activity of Cu-oxide loaded CS-TA film in sequestering carbon dioxide (CO2), an electrochemical setup was used. Electrochemical reduction of CO2 was successfully demonstrated. It was observed that CS-TA environment not only maintained catalytic properties of Cu oxide but also allowed solution processing of Cu-oxide film onto the electrode surface. Chapter 4 discusses a convenient method of making monodispersed water dispersible Cu loaded chitosan nanoparticles (Cu-CS) using HCl depolymerized CS polymer. The purpose of this study was to investigate if there was any improvement in antibacterial properties of Cu-CS nanoparticles prepared using hydrothermally treated CS polymer. Interestingly, it was observed that the antibacterial efficacy of Cu was not compromised in Cu-CS nanoparticles. Moreover, the materials exhibited improvement in antibacterial efficacy against both Gram-negative and Gram-positive bacteria species. A plausible mechanism has been proposed to explain antibacterial results. Chapter 5 summarizes major findings of this dissertation research and presents future research directions.
|
18 |
Design and Synthesis of a New Class of Self-Cross-Linked Polymer NanogelsJiwpanich, Siriporn 13 May 2011 (has links)
The design and engineering of nanoscopic drug delivery vehicles that stably encapsulate lipophilic drug molecules, transport their loaded cargo to specific target sites, and release their payload in a controlled manner are of great interest in therapeutic applications, especially for cancer chemotherapy. This dissertation focuses on chemically cross-linked, water-soluble polymer nanoparticles, termed nanogels, which constitute a promising scaffold and offer the potential to circumvent encapsulation stability issues. A facile synthetic method for a new class of self-cross-linked polymer nanogels, synthesized by an intra/intermolecular disulfide cross-linking reaction in aqueous media, is described here. This simple emulsion-free method affords noncovalent lipophilic guest encapsulation and surface functionalization that may allow for targeted delivery. The encapsulation stability of lipophilic molecules sequestered within these nanoscopic containers is evaluated by a fluorescent resonance energy transfer (FRET) based method developed by our research group. We demonstrate that the encapsulation stability of noncovalently encapsulated guest molecules in disulfide cross-linked polymer nanogels can be tuned and that guest release can be achieved in response to a biologically relevant stimulus (GSH). In addition, varied hydrophobicity in the self-cross-linked nanogels affects the lipophilic loading capacity and encapsulation stability. We reveal that optimal loading capacity is limited by encapsulation stability, where over-loading of lipophilic molecules in the nanoscopic containers may cause undersirable leakage and severely compromise the viability of such systems for drug delivery and other biological applications.
|
19 |
Evaluating the use of cross-linked PVA nanoparticles for gene and drug deliveryFinter, Wayne January 2010 (has links)
Due to the safety concerns surrounding viral vectors, non-viral alternatives are desirable for fulfilling the aim of gene therapy. In this project gel mobility shift assays demonstrated how cross-linked PVA nanoparticles successfully form complexes with plasmid DNA and are of a size and charge that should, theoretically, permit endocytosis by eukaryotic cells. However, during in vitro transfection studies no reporter (GFP) gene expression was noted. The collective evidence from electroporation, fluorescent-DNA-tagging, Lipofectin® or calcium phosphate chimeric and chloroquine experiments suggest that a lack of cell uptake is responsible. Nevertheless, the same cross-linked PVA nanoparticles have been shown to exhibit much promise in the field of drug delivery during in vitro experiments, even when used to target the same cell types as those used during transfection studies. Nanagel®, a cross-linked PVA nanoparticle containing budesonide, achieved higher levels of drug delivery than a commercially available form of the same drug (Pulmicort®) after 1 or 24 hours drug exposure. Furthermore, by measuring superoxide production during a stimulated respiratory burst, the budesonide delivered to cells appears fully functional and significantly more effective than Pulmicort® in preventing the formation
of reactive oxygen species, following a 24-hour pre-treatment period with the formulation. These findings have exciting possibilities for the use of hard-to-dissolve corticosteroids in the treatment of respiratory disease. / AGT Sciences Ltd
|
20 |
Kinematic Design and Analysis of a Morphing WingStubbs, Matthew D. 16 December 2003 (has links)
In order to optimize the flight characteristics of aircraft, wings must be designed for the specific mission an aircraft will see. An airplane rarely has one specific mission, and therefore is usually designed as a compromise to meet many flight objectives with a single wing surface. Large-scale shape change of a wing would enable a wing design to be optimized for multiple missions.
Engineers at the National Aeronautics and Space Administration (NASA) Langley Research Center are investigating a new Hyper-Elliptic Cambered Span (HECS) wing configuration that may lead to increased stability and control, and to improved aerodynamic efficiency, during flight. However, during take-off and landing, a conventional wing design (not curved down) may be preferred. Thus a need has been developed for a wing whose contour can be changed during flight. The so-called "morphing" that is required has been limited by a lack of feasible design solutions.
One design concept is to use an adaptive structure, with an airfoil skin applied, as the shape-changing driver. Most designs of this kind require multiple actuators to control the changing shape. This thesis introduces a novel design for a morphing wing mechanism using a single degree-of-freedom kinematic chain. In this work, the concept is introduced with sufficient background to aid in understanding. The design tools developed include a synthesis procedure and a sensitivity analysis to determine the effects of manufacturing errors. / Master of Science
|
Page generated in 0.032 seconds