Spelling suggestions: "subject:"cross linked"" "subject:"gross linked""
31 |
NOVEL BIOBASED CHITOSAN/POLYBENZOXAZINE CROSS-LINKED POLYMERS AND ADVANCED CARBON AEROGELS FOR CO2 ADSORPTIONAlhwaige, Almahdi A. 11 June 2014 (has links)
No description available.
|
32 |
Recycling of Commodity Plastics into Recyclable Thermosets Using Covalent Adaptable Networks / Återvinning av vanliga termoplaster till återvinningsbara härdplaster med hjälp av kovalenta anpassningsbara nätverkTipnis, Atharv January 2024 (has links)
Syftet med projektet var att samla in återvunnen polyeten och omvandla den till återvinningsbara högstyrke-härdplaster genom att designa ett kovalent anpassningsbart nätverk för det. Återvunnen polyeten samlades in och ympades med maleinsyraanhydrid genom reaktiv extrudering och en friradikalmekanism, vilket sedan tvärbands med laboratoriesyntetiserad polyimid. Den resulterande tvärbundna blandningen bearbetades genom formsprutning, och tester visade att den förväntade reaktionen hade utförts framgångsrikt och de mekaniska egenskaperna förbättrades avsevärt. Materialet bearbetades också om för att testa dess återvinningsbarhet och denna process samt analysen av materialet efteråt visade också lovande resultat. / The aim of the project was to collect recycled polyethylene and transform it into recyclable high-strength thermosets by designing a covalent adaptable network. Recycled polyethylene was collected and grafted with maleic anhydride through reactive extrusion and free radical mechanism, which was then cross-linked with laboratory synthesized polyimide. The resulting cross-linked blend was processed using injection molding, and testing showed that the expected reaction had been carried out successfully and mechanical properties were significantly enhanced. The material was also reprocessed to test its recyclability and this process and analysis of material after it showed promising results as well.
|
33 |
A new rheological polymer based on boron siloxane cross-linked by isocyanate groupsShmelin, George January 2012 (has links)
The research described in this thesis originated from an idea to develop new body protection for the sport of fencing. The ultimate goal is to develop body armour which would be flexible, wearable, washable, light and breathable, offer protection from injuries and cover the entire body of a sportsman. A new material which exhibits shear thickening behaviour has been specially developed for this purpose in the process of this investigation. The material was designed and synthesised as a soft polymeric system which is flexible, chemically stable and able to increase the value of its modulus of elasticity upon impact at a high strain rate, while remaining in its soft gel-like elastomeric state when low strain rate deformation is applied. The polymeric system that has been developed is based on interpenetrating polymeric networks (IPN) of immiscible polyurethane/urea-ester/ether and poly(boron)n(dimethylsiloxane)m (where on average m ≈ 16 n). In addition, as the polydimethylsilane (PDMS) based polymeric system strongly tends to phase separation, the siloxane polymeric network was chemically cross-linked to the polyurethane polymeric network through polyurethane chemical cross-link-bridges. In order to introduce polyurethane cross-links to a siloxane-based polymeric network, some of the attached methyl groups in the PDMS polymeric backbone were substituted by ε-pentanol groups. The resulting polymeric system combines properties of an alternating copolymer with IPN. The actual substitution of the methyl groups of PDMS into alternating ε-pentanol groups was performed by Grignard reaction of trifunctional chlorosilane monomers, magnesium and 1,5-dibromopentane. Chemical analytical techniques like FT-IR, 13C NMR and 1H NMR spectroscopy were used to reveal the chemical structure of the synthesised polymeric network. The mechanical and dynamical properties of the obtained polymeric system were analysed by dynamic mechanical analysis (DMA). This part of the investigation indicated that the novel polymeric system exhibited shear thickening behaviour, but only at a narrow diapason of deformations (i.e., deformations between 2 to 3 % of the length of the sample). At this limited diapason of deformation an effective increase of the modulus of elasticity from 6 MPa (at lower frequencies, i.e., up to ≤6 Hz of the applied oscillating stress) to 65 MPa (at frequencies between 12.5 to 25 Hz) was obtained. However, no increase in the modulus of elasticity was recorded at deformations below 1.5 % or above 3.5 % of length of the sample at the same frequencies (0 to 25Hz) of the applied oscillating stress.
|
34 |
Stabilisation des Membranes Perfluorosulfoniques par Réticulation et Développement de Membranes Composites Inorganique-organique. Application aux Piles à Combustible à Moyenne Température. / Stabilisation of Perfluorosulfonic Acid Membranes by Cross-linking and Inorganic-organic Composite Formation. Application in Medium Temperature Proton Exchange Membrane Fuel Cells.Gao, Hongrong 13 December 2010 (has links)
Ce travail décrit le développement de membranes réticulées et de membranes composites inorganique-organique basées sur des polymères perfluorosulfoniques (PFSA) à chaîne longue (LSC) et courte (SSC) et à faible masse équivalente, pour application dans une pile à combustible fonctionnant à moyenne température et à faible humidité relative. Des membranes (LSC-PFSA) réticulées par des groupements sulfonimide ont été préparées à partir de membranes fonctionnalisées par des groupements fluorure de sulfonyle. Les membranes réticulées de type SSC-PFSA ont été préparées à partir d'un polymère à chaînes 2-bromo-1,1,2,2-tetrafluoroéthoxy pendantes et réticulables, par traitement thermique pour former des ponts perfluoro. Les membranes préparées ont été caractérisées par spectroscopies IR, Raman, RMN et XPS, par MEB-EDX et ATG. Les membranes de LSC-PFSA et SSC-PFSA réticulées présentent une stabilité dimensionnelle accrue et une meilleure performance en pile à combustible hydrogène-oxygène jusqu'à 110°C que celles des membranes de PFSA non modifiées. Une procédure d'échange ionique/précipitation a été utilisée pour la préparation de systèmes composites à partir de membranes de LSC-PFSA et SSC-PFSA. Plusieurs techniques ont été utilisées pour caractériser les matériaux préparés. Les membranes de type SSC-PFSA-ZrP présentent une morphologie distincte, et différente de celle des membranes LSC-PFSA-ZrP. En pile à combustible, ces membranes composites autorisent une température de fonctionnement plus élevée et une humidité relative plus faible, que les membranes non modifiées. / The objective of this research was to develop cross-linked and composite inorganic-organic membranes based on long and short side chain (LSC, SSC) perfluorosulfonic acid (PFSA) polymers with low equivalent weight/high ion exchange capacity for operation at medium temperature and low relative humidity in proton exchange membrane fuel cells. Covalently cross-linked LSC-PFSA membranes were prepared from sulfonyl fluoride form membranes by reaction with an ammonium base followed by thermal processing to give cross-linking through sulfonimide groups. Covalently cross-linked SSC-PFSA membranes were prepared by formation of perfluoro-cross-links under thermal treatment of solution cast polymers containing cross-linkable 2-bromo-1,1,2,2-tetrafluoroethoxy side chains. Evidence for cross-linking was provided by IR, Raman, NMR and XPS spectroscopies, SEM-EDX, tensile testing and TGA. Cross-linked LSC and SSC-PFSA membranes have increased dimensional stability and improved performance in a single hydrogen-oxygen cell fuel up to 110°C compared with the corresponding non-cross-linked membranes. Composite PFSA-zirconium phosphate membranes, based on LSC and SSC PFSA (or cross-linked PFSA) membranes were prepared using an ion exchange/precipitation procedure. The physical properties of LSC-PFSA-ZrP and SSC-PFSA-ZrP have been compared and the morphology of the composite membranes shown to differ in SSC and LSC membranes. Composite membranes enabled fuel cell operation at higher temperature/lower RH than non-composite PFSA. Preliminary results indicated that association of cross-linking and composite membrane formation is a clear future perspective of this work.
|
35 |
Les technologies nouvelles ont-elles un rôle à jouer sur un marché très concurrentiel de la Russie postsoviétique, le marché du chauffage ? (Période étudiée 1991-2008) / Do new technologies have a part to play in the very competitive heating market of the post-soviet Russia? (Period studied 1991-2008)Lochoshvili, Maksym 16 October 2009 (has links)
Sur un exemple concret d’entreprise française disposant des technologies innovantes dans les domaines du chauffage et de la distribution d’eau et ayant un projet d’expansion vers un nouveau marché, en l’occurrence, le marché russe, l’auteur montre l’importance de ces technologies pour accéder au marché fortement différent du marché domestique. Au sein du secteur du chauffage dans un pays où, à cause des conditions climatiques froides, le besoin de se chauffer présente un besoin vital, où le retard technologique dû au phénomène historique du monopole du chauffage central collectif est particulièrement ressenti et où le marché est en pleine formation avec la montée de la concurrence, les technologies nouvelles ont sans doute un rôle capital à jouer. Comment l’entreprise porteuse de ces technologies doit-t-elle aborder le marché russe certes très prometteur, mais fragile surtout en cette période délicate de la crise économique mondiale? Quels en sont les risques et les perspectives ? Comment réussir ce marché ? Comment mettre en valeur et transférer de nouvelles solutions technologiques ? Quels sont les avantages de ce transfert pour l’entreprise, mais également pour son partenaire local, pour la région visée et pour l’Etat receveur ? Telles sont les questions que l’auteur se pose. Le rôle des technologies nouvelles va certainement au-delà d’un secteur ou d’un domaine d’activité : les technologies nouvelles apportées par des entreprises occidentales ont sans doute accéléré, en ce qui concerne la Russie, le passage d’un système économique du type soviétique vers un système de libre-échange que l’on connait sous le terme d’économie de marché. / On a specific example of a French company having innovative technologies in the field of heating and water distribution, and realizing an expansion project to a new market, in this case, the Russian market, the author shows the importance of technologies when penetrating a market strongly different from the domestic one. Within the heating sector in the country where, because of a cold climate, the need to feel warm is a vital need, where the technological backwardness due to the historical phenomenon of the central residential heating monopoly is obvious, and where market is taking shape and competition is now growing, new technologies have without doubt a capital part to play. How should a company with such technologies approach the Russian market certainly very promising, but also fragile especially in this delicate period of the world economic crisis? What are the risks and the perspectives for the company? How to succeed in this market? How to enhance the value and to transfer new technological solutions? What advantages does this transfer bring to the company, but also to the company’s local partner, to the targeted region, and to the receiving country? These are questions the author asks himself. The role of new technologies is certainly beyond a sector or a field of activity: the new technologies brought by western companies undoubtedly accelerated, as Russia is concerned, the change from the Soviet-type economic system to a free-market system, known as the market economy.
|
36 |
Molecularly Imprinted Polymers Based On Fluorescent And Template Binding Cross-LinkerChakraborty, Twarita 08 1900 (has links) (PDF)
The synthesis of materials with molecular recognition properties has become a topic of great technological and scientific interest. Molecular imprinting is one of the most effective strategies in preparing highly selective synthetic receptors. The technique of molecular imprinting involves the copolymerization of functional and cross-linking monomers in the presence of a molecular template. Following polymerization and subsequent removal of the template, the molecularly imprinted polymer (MIP) retains a “molecular memory” of the template. During rebinding, the resultant polymer shows higher affinity and selectivity towards the molecular template when compared to other structural analogs. Ease of preparation and high thermal and chemical stability of this class of materials offers a broad range of potential applications. Promising areas of application include separation, chromatography, catalysis, sensors, antibody mimics, and drug delivery etc.
The thesis entitled “Molecularly Imprinted Polymers based on Fluorescent and Template binding Cross-linker” deals with the design and synthesis of several molecularly imprinted polymers (MIPs) using different functional and cross-linking monomers, the main focus being use of preformed template-monomer complex, use of fluorescent cross-linker and development of functional group containing cross-linker.
Chapter 1: An Introduction to Molecularly Imprinted Polymers.
The first chapter provides an introduction to the field of molecularly imprinted polymers. It presents an overview of molecular imprinting process including a brief history of its discovery and its evolution to the present form. This chapter further elaborates on the principle of molecular imprinting with an emphasis on different parameters that directly affect their performance. It also provides a brief review of the applications of molecularly imprinted polymers.
Chapter 2: Highly Cross-linked Metal Ion Imprinted Polymers.
The second chapter deals with the synthesis of series of highly cross-linked metal-ion imprinted polymers. The process of metal ion-imprinting usually involves carrying out the polymerization and cross-linking directly in presence of the appropriate metal ion. In the present study, chemical-immobilization method was adopted which involves the use of preformed metal complexes with polymerizable group for the imprinting. Acrylate complexes of various metal-ions, such as Cu2+, Zn2+, Co2+, Ni2+, Pb2+ and Cr3+, were synthesized prior to polymerization. These pre-assembled complexes were then used to prepare MIPs, in the anticipation that this would lead to enhanced selectivity. Ethyleneglycol dimethacrylate (EGDMA) was used as the cross-linking monomer. As a control, the respective non-imprinted polymers (NIPs) were also made in absence of the template metal ion. Following polymerization, the template metal ion was extracted from the resultant metal ion-imprinted polymer. The selectivity of the metal ion-imprinted polymers was examined by a batch process using analytical tools, such as, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Spectroscopy (ICP). The spectroscopic studies revealed significant selectivity of all the MIPs towards the template metal ion. Among all six metal ion-imprinted polymers, Pb2+ and Cr3+ ion-imprinted polymer showed remarkable selectivity, followed by Cu2+ and Zn2+ ion-imprinted polymers. The Co2+ and Ni2+ ion-imprinted polymers exhibited comparatively poor selectivity. Representative plots depicting the selectivity exhibited by Pb2+ and Cr3+ ion-imprinted polymers are shown in Figure 1. These observations were rationalized based on the size and geometric preferences imposed by the imprinted site on the ion that binds to it.
Figure 1. Selectivity study for (a) Pb2+ ion-imprinted polymer, (b) Cr3+ ion-imprinted polymer.
Chapter 3. Molecularly Imprinted Fluorescent Chemosensor for Copper (II).
Cu(II) is a source of important pollutant and therefore, the development of sensors that can detect Cu(II) selectively as well as remove Cu(II) from contaminated samples is an important objective. The use of molecular imprinting technique is an appealing approach in this regard. For this, a fluorophore containing cross-linker, namely 9,10-bis-(acryloyloxymethyl)anthracene (BAMA) was synthesized. This fluorescent cross-linker was used along with the standard cross-linker, EGDMA, for preparing Cu2+ ion-imprinted polymer. The complex of copper methacrylate (Cu-MAA) was prepared prior to polymerization used for the preparation of MIP. The resultant imprinted polymer exhibited quenching of the fluorescence in presence of Cu2+ ion, both in organic and aqueous medium. The efficiency of quenching of NIP (prepared in absence of Cu2+ ion) was significantly lower than that of MIP. A typical stack spectra showing the quenching process, along with a comparison of the quenching efficiency of MIP and NIP is shown in Figure 2.
The imprinted polymers showed significant selectivity over other non-template metal ions, thereby reaffirming the importance of the imprinting process. The sensitivity of the fluorescence detection could be enhanced by increasing the level of the fluorophore incorporation. The increased sensitivity in detecting Cu2+ ion, demonstrated by the MIP suggests that a statistically random incorporation of the fluorophore into MIP matrices could be a useful approach for imparting a sensing element to MIPs.
Figure 2. Fluorescence spectra of the (a) imprinted (MIP-1) and (b) non-imprinted (NIP-1) polymers in the presence of various concentration of Cu(OAc)2 in methanol. (c) Comparison of quenching efficiency of MIP-1 and NIP-1. Data were collected 3 h after addition of copper solution. I0 and I are the fluorescence intensities at 399 nm of the polymers in the absence presence of copper respectively. Two individual runs are presented in (c).
Chapter 4. Molecularly Imprinted Turn-Off-On Sensor.
This chapter describes the design and synthesis of molecularly imprinted fluorescent turn-off-on sensor utilizing the same fluorescent cross-linker, BAMA. Combining the process of fluorescence resonance energy transfer (FRET) with molecular imprinting technique, a novel turn-off-on sensor was developed. A molecularly imprinted polymer was prepared using a fluorescent template Coumarin-30 (C-30). C-30 was chosen as the template to ensure a significant overlap of the emission spectra of BAMA and the absorption spectra of C-30, thereby optimizing for FRET.
Figure 3. Structures of relevant molecules.
The C-30 imprinted polymer exhibited simultaneous quenching in fluorescence (turn-off) of BAMA and enhancement in fluorescence (turn-on) of C-30 (Figure 4). The imprinted polymer showed significantly better performance over the non-imprinted polymer (NIP).
Figure 4. Fluorescence spectra of the (a) imprinted (MIP) and (b) non-imprinted (NIP) polymers with increasing concentration of the template Coumarine-30 in methanol.
The UV-vis studies revealed that the more effective quenching is indeed due to the affinity for C-30 exhibited by the higher binding imprinted polymer. The imprinted polymer also showed significant selectivity over structurally analogous molecules. Therefore, both high sensitivity and selectivity were realized in such novel off-on sensor. Extension of this concept to other biologically relevant fluorescent templates could lead to potentially useful applications.
Chapter 5. Design of New Template Binding Cross-linker.
In molecularly imprinted polymers (MIP), high cross-linking density (~80 to 90 mole percent) is essential to ensure high selectivity, which limits the functional (binding) monomer to about 10-20 mole percent. Methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) are the most common combination of functional monomer and cross-linker, respectively, used in molecular imprinting. Generally a molecularly imprinted polymer made with this combination, contains only 10-20% binding sites. This limitation of binding site density is an aspect that has largely been overlooked. In order to improve the efficiency of MIP materials by enhancing the number of binding sites, a new cross-linking monomer (CYDI, 1) with two carboxylic acid groups was designed and synthesized by coupling itaconic anhydride with cyclohexane dimethanol (Figure 5).
Figure 5. Structures of relevant molecules. The new functional group bearing cross-linking monomer (1) Itaconate ester of cyclohexanedimethanol (CYDI), the template (2) theophylline (Theop) and the structural analogue of template (3) caffeine (Caff).
This new cross-linking monomer was then employed for preparing molecularly imprinted polymer using a drug molecule, theophylline (Theop 2, a bronchodilator) as the template. Seven molecularly imprinted polymers were synthesized with different ratios of CYDI and EGDMA, keeping the cross-linking density constant. The binding efficiency and the selectivity of these imprinted polymers were thoroughly investigated. It was seen that while saturation binding values for theophylline increased continuously with functional cross-linker (CYDI) content, the optimum selectivity with respect to analogous substrate, caffeine, was attained at 40 mol% CYDI. These studies suggest that the approach of using functional group containing cross-linkers could lead to improved MIP performance.
|
37 |
Synthesis of poly(NIPAM-co-vmbpy) microspheres and transition metal monomers for metallopolymeric material constructionTran-Math, Carolyn 01 January 2014 (has links)
Poly-N-isopropylacrylamide (PNIPAM) gels grafted to redox-active metal monomers undergo sudden expansion-contraction activity in response to change in environmental conditions, such as temperature, pH, ion concentration, and oxidation states of the metal. The relevance of these conditions to biological systems has garnered attention for PNIPAM-based polymer as potential biomedical materials. Candidate transition metal monomers containing ruthenium and nickel cores were designed and synthesized for copolymerization with NIPAM and cross-linker methylene-bis-acrylamide in order to attain metallopolymer microspheres with a high percentage of metal incorporation. Synthesis of 4-vinyl-4'-methyl-2,2'-bipyridine (vmbpy) was optimized from literature procedures for usage in the metal-containing monomers. Metal-containing monomers were then synthesized, purified, and characterized using electrospray ionization mass spectrometry (ESI-MS), proton nuclear magnetic resonance ( 1 H-NMR), X-ray diffraction, Ultraviolet-Visible light (UV-Vis) spectroscopy, and spectrofluorometry. While the Ru complex was pure and exhibited interesting photochemical properties, lability of the ligands on the Ni monomers resulted in complication of their synthesis. Polymer microspheres of poly(NIPAM-co-vmbpy), the cross-linked copolymer constructed from NIPAM and vmbpy monomers, were synthesized from modified emulsion polymerization procedures. Experimental setup parameters and conditions—such as the methods of injection of initiator and stirring, the time duration for incubating the emulsion, and the initiation temperature—were varied to assess their influences on the material properties of the final product. The polymers were tested for size and morphological uniformity by dynamic light scattering (DLS) and scanning electron microscopy (SEM). While varying the method of initiator injection had no measurable effect on the product, strong mechanical stirring and incubation of the polymer emulsion for 15-25 minutes at 71 °C procured similar polymer products. Consistent properties ensured the polymers' suitability for further material development. Preliminary morphological and spectroscopic characterization was conducted of metallopolymers made from Ru and Ni grafted to PNIPAM. Metallopolymers containing polypyridyl Ru cores exhibited desirable spectroscopic properties and spherical morphology.
|
38 |
Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve RegenerationKohn-Polster, Caroline, Bhatnagar, Divya, Woloszyn, Derek J., Richtmyer, Matthew, Starke, Annett, Springwald, Alexandra H., Franz, Sandra, Schulz-Siegmund, Michaela, Kaplan, Hilton M., Kohn, Joachim, Hacker, Michael C. 21 December 2023 (has links)
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and
functionalization concepts are required to address clinical demands in peripheral nerve regeneration
(PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building
blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system
(cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and
templating process. Conduits were characterized concerning their mechanical strength, in vitro
and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear
thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits.
Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler
was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and
growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation
motivated further application of the filler material in a sciatic nerve defect. Compared to the empty
conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve
graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular
matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.
|
39 |
Characterization of Conduction and Polarization Properties of HVDC Cable XLPE Insulation MaterialsGhorbani, Hossein January 2016 (has links)
Since its first introduction in 1998, extruded direct current (DC) cable technology has been growing rapidly leading to many cable system installations with operation voltages up to 320 kV. Cable manufacturers invest heavily on technology development in this field and today extruded DC cable systems for operation voltages as high as 525 kV are commercially available. The electrical field distribution in electrical insulation under DC voltage is mainly determined by the conduction physics, therefore a good understanding of the DC conduction is necessary. In case of Cross-linked Polyethylene (XLPE) insulation, the presence of the peroxide decomposition products (PDP) is believed to influence its electrical properties. The PDP are volatile and therefore they may diffuse out of the samples during sample preparation and testing. Besides, the morphology of the XLPE is known to evolve over time even at moderate temperatures. Since the material may change during preparation, storage and even measurement, the procedure during all stages of the study should be chosen carefully. In this work, the physics of the dielectric response and conduction in XLPE is briefly discussed. The existing measurement techniques relevant to characterization of DC conduction in XLPE insulation materials are reviewed. The procedure for high field DC conductivity measurement is evaluated and recommendations for obtaining reproducible results are listed. Two types of samples are studied, i.e. thick press molded samples and thick plaque samples obtained from the insulation of in-factory extruded cables. For press molded samples, the influence of the press film used during press molding and the effect of heat-treatment on the electrical properties of XLPE and LDPE are studied. High field DC conductivity of XLPE plaque samples is measured with a dynamic electrode temperature to simulate the standard thermal cycles. Investigations show that using PET film during press molding leads to higher apparent DC conductivity and dielectric losses when compared to using aluminum foil. The influence of heat-treatment is different depending on the press film. High field DC conductivity measurements and chemical composition measurement of samples obtained from the cable insulation are in good agreement with the results obtained from the full scale measurements. Finally a non-monotonic dependence of apparent DC conductivity to temperature of some samples pressed with PET film is discovered which to the author’s best of knowledge has not been previously reported in the literature. / Sedan det första införandet i 1998 har extruderad likspänning (DC) kabeltekniken vuxit snabbt och har lett till många existerande kabelsysteminstallationer med driftspänningar upp till 320 kV. Kabeltillverkare investerar kraftigt i teknikutveckling inom detta område och idag finns extruderade DC kabelsystemen tillgängliga för driftspänningar så höga som 525 kV. Elektrisk fältfördelning i isolationsmaterial under hög DC spänning, beror framförallt på materialets elektriska ledningsfysik, därför är en bra förståelse av DC ledningsförmåga nödvändig. Isolationsmaterial av tvärbunden polyeten (PEX) innehåller tvärbindningsrestgaser som tros påverka materialets elektriska egenskaper. Restgaserna är flyktiga och kan diffundera bort från proven under preparering och mätning, även under måttliga temperaturer. PEX materialets morfologi ändras även med tiden. Med tanke på att materialet kan ändras under provpreparering, lagring och även vid mätning, så måste samtliga steg ovan väljas mycket försiktigt. I detta arbete diskuteras grundläggande fysik för dielektrisk polarisering och ledningsförmåga i PEX-isolation tillsammans med granskning av existerande mätteknik relevant för karakterisering av ledningsförmåga i PEX. Procedurer för mätning av DC ledningsförmåga under höga elektriska fält är undersökta och rekommendationer för reproducerbar mätningar är framtagna. Två typer av prover är studerade, tjocka pressade plattor och tjocka plattor som ursvarvats från kommersiell tillverkade högspänningskablar. För pressade plattor, studerades effekten utav press-filmens påverkan på de elektriska egenskaperna hos PEX och LDPE. Påverkan av värmebehandling på DC ledningsförmåga av PEX plattor studerades också. Slutligen studerades DC ledningsförmåga av PEX och LDPE plattor under höga DC fält och med dynamisk temperatur på elektroderna med syftet att efterlikna standardvärmecyklingar. Undersökningarna visade att användningen av PET filmer under pressning av plattor ledde till högre DC ledningsförmåga och högre dielektriska förluster i proven i jämförelse med användning av aluminiumfolie. Påverkan utav värmebehandling är olika beroende på typ av film som används pressningen. Det finns en stark korrelation mellan resultaten från DC konduktivitet och kemisk komposition mätningar från plattor skaffat från kabelisolation och resultaten från fullskaliga kabelmätningar. Slutligen, upptäcktes ett icke monotont beroende av DC konduktivitet hos PEX och LDPE plattor på temperatur som tidigare inte rapporterats i litteraturen. / <p>QC 20160125</p>
|
40 |
Nanolithography on thin films using heated atomic force microscope cantileversSaxena, Shubham 01 November 2006 (has links)
Nanotechnology is expected to play a major role in many technology areas including electronics, materials, and defense. One of the most popular tools for nanoscale surface analysis is the atomic force microscope (AFM). AFM can be used for surface manipulation along with surface imaging.
The primary motivation for this research is to demonstrate AFM-based lithography on thin films using cantilevers with integrated heaters. These thermal cantilevers can control the temperature at the end of the tip, and hence they can be used for local in-situ thermal analysis. This research directly addresses applications like nanoscale electrical circuit fabrication/repair and thermal analysis of thin-films. In this study, an investigation was performed on two thin-film materials. One of them is co-polycarbonate, a variant of a polymer named polycarbonate, and the other is an energetic material called pentaerythritol tetranitrate (PETN).
Experimental methods involved in the lithography process are discussed, and the results of lithographic experiments performed on co-polycarbonate and PETN are reported. Effects of dominant parameters during lithography experiments like time, temperature, and force are investigated. Results of simulation of the interface temperature between thermal cantilever tip and thin film surface, at the beginning of the lithography process, are also reported.
|
Page generated in 0.0552 seconds