Spelling suggestions: "subject:"transdiscipline"" "subject:"classdiscipline""
1 |
Scan & Scansion: An Urban Residency for Poets & Artists Working in CollaborationOverby, Heather A 01 January 2018 (has links)
Scansion is the act of discerning a poem’s meter and measure to discover its overall meaning. To achieve beauty in poetry, just as in interior design, content must continually be in conversation with form. And, just as a building must be scaled against the human figure to determine its final shape, a poem is scaled against human breath, the breadth of our sounds.
Scan & Scansion is a Richmond-based residency with a six-month term providing a work, living and exhibition space to poets and artists who wish to work collaboratively across disciplines. As the program is essentially about applied poetics and process, it presents the perfect moment to place these two modes of measurement alongside one another, exploring how poetics may be used as a design driver--how a space might be both architectural and lyrical, and, ultimately, how poetry and the arts, or the sound and the image, may enrich each other.
|
2 |
Machine Learning for Air Flow Characterization : An application of Theory-Guided Data Science for Air Fow characterization in an Industrial Foundry / Maskininlärning för Luftflödeskarakterisering : En applikation för en Teorivägledd Datavetenskapsmodell för Luftflödeskarakterisering i en IndustrimiljöLundström, Robin January 2019 (has links)
In industrial environments, operators are exposed to polluted air which after constant exposure can cause irreversible lethal diseases such as lung cancer. The current air monitoring techniques are carried out sparely in either a single day annually or at few measurement positions for a few days.In this thesis a theory-guided data science (TGDS) model is presented. This hybrid model combines a steady state Computational Fluid Dynamics (CFD) model with a machine learning model. Both the CFD model and the machine learning algorithm was developed in Matlab. The CFD model serves as a basis for the airflow whereas the machine learning model addresses dynamical features in the foundry. Measurements have previously been made at a foundry where five stationary sensors and one mobile robot were used for data acquisition. An Echo State Network was used as a supervised learning technique for airflow predictions at each robot measurement position and Gaussian Processes (GP) were used as a regression technique to form an Echo State Map (ESM). The stationary sensor data were used as input for the echo state network and the difference between the CFD and robot measurements were used as teacher signal which formed a dynamic correction map that was added to the steady state CFD. The proposed model utilizes the high spatio-temporal resolution of the echo state map whilst making use of the physical consistency of the CFD. The initial applications of the novel hybrid model proves that the best qualities of these two models could come together in symbiosis to give enhanced characterizations.The proposed model could have an important role for future characterization of airflow and more research on this and similar topics are encouraged to make sure we properly understand the potential of this novel model. / Industriarbetare utsätts för skadliga luftburna ämnen vilket över tid leder till högre prevalens för lungsjukdomar så som kronisk obstruktiv lungsjukdom, stendammslunga och lungcancer. De nuvarande luftmätningsmetoderna genomförs årligen under korta sessioner och ofta vid få selekterade platser i industrilokalen. I denna masteruppsats presenteras en teorivägledd datavetenskapsmodell (TGDS) som kombinerar en stationär beräkningsströmningsdynamik (CFD) modell med en dynamisk maskininlärningsmodell. Både CFD-modellen och maskininlärningsalgoritmen utvecklades i Matlab. Echo State Network (ESN) användes för att träna maskininlärningsmodellen och Gaussiska Processer (GP) används som regressionsteknik för att kartlägga luftflödet över hela industrilokalen. Att kombinera ESN med GP för att uppskatta luftflöden i stålverk genomfördes första gången 2016 och denna modell benämns Echo State Map (ESM). Nätverket använder data från fem stationära sensorer och tränades på differensen mellan CFD-modellen och mätningar genomfördes med en mobil robot på olika platser i industriområdet. Maskininlärningsmodellen modellerar således de dynamiska effekterna i industrilokalen som den stationära CFD-modellen inte tar hänsyn till. Den presenterade modellen uppvisar lika hög temporal och rumslig upplösning som echo state map medan den också återger fysikalisk konsistens som CFD-modellen. De initiala applikationerna för denna model påvisar att de främsta egenskaperna hos echo state map och CFD används i symbios för att ge förbättrad karakteriseringsförmåga. Den presenterade modellen kan spela en viktig roll för framtida karakterisering av luftflöden i industrilokaler och fler studier är nödvändiga innan full förståelse av denna model uppnås.
|
Page generated in 0.0414 seconds