• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 21
  • 13
  • 13
  • 10
  • 5
  • 4
  • 1
  • Tagged with
  • 237
  • 237
  • 53
  • 50
  • 48
  • 34
  • 32
  • 30
  • 27
  • 26
  • 23
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterisation of proton exchange membranes in an H₂SO₄ environment / Retha Peach

Peach, Retha January 2014 (has links)
In light of the world‟s growing demand for energy that is environmentally friendly and sustainable, energy sources such as hydrogen have been considered potential contenders. Hydrogen, which can be used for energy storage, can be produced efficiently by the membrane based Hybrid Sulfur (HyS) thermo-chemical process consisting of a decomposition and an electrolysis step. During the HyS electrolysis step, SO2 and H2O are converted to H2 and H2SO4, which implies that the proton exchange membranes (PEMs) to be used for this process should have a high proton conductivity, limited SO2 cross-over and good H2SO4 stability. In order to find alternatives to the costly and high-temperature unstable Nafion®, the aim of this study was to evaluate the H2SO4 stability of various novel membranes. To structure the study, the novel PEM materials were grouped according to the PBI-type base component within the blend membranes, resulting in three groups comprising non-PBI based membranes, PBIOO based membranes and F6-PBI based membranes. Nafion®212 was included as reference PEM. By repeating the H2SO4 treatment with three different Nafion®212 samples, the obtained Nafion® data was also used to determine the experimental and analytical error margins for the study. The stability of all membranes was determined by submerging the membrane samples in 80 wt% H2SO4 at 80 °C for 120 hours. To determine the influence of the acid on the membranes, all samples were characterised before and after the H2SO4 treatment and compared in terms of their acid stability. Physical characterisation of the PEMs included the evaluation of weight and thickness changes, while IEC, SEM-EDX, FTIR and TGA were used to elucidate possible chemical changes due to the H2SO4 treatment. According to the Nafion®212 data, which had been obtained in triplicate for each of the analytical techniques, the experimental error of both the analytical and H2SO4 treatment remained below 10 %, except for the SEM-EDX sulfur-content where significantly larger errors were observed. In spite of the high error margins of the SEM-EDX data (S-content), its results, combined with the results from the other analytical techniques, resulted in a better understanding (both physical and chemical) of the effect the H2SO4 had on the membrane. This further facilitated the evaluation and comparison of the various blended PEM materials in terms of their H2SO4 stability, and the subsequent relation obtained between the observed stability and the chemical constitution and cross-linking of the membranes. After the 80 wt% H2SO4 treatment, significant weight losses were reported for the non-PBI based and PBIOO based membrane groups in comparison with the minimal changes noted for the F6-PBI based group and Nafion®212. Furthermore, significant thickness changes were reported for most of the PBIOO based membranes. The small weight and thickness changes observed for the F6-PBI confirmed the improved stability of this group of membranes in an H2SO4 environment, most likely due to the protective role of the partially fluorinated basic polymer and the known strength of the C-F bonds present. The results showed a clear correlation between the H2SO4 stability and the specific polymers present in the PEM blends investigated. Specific effects found included sulfonation, salt formation, hydrolysis and the accompanied dissolution of membrane fragments. Significant physical changes, for example ascribed to sulfonation of the concerned polymers, were supported by increased IEC measurements and peak intensities of the FTIR spectra, corresponding to the additional –SO3H groups present, while a variation in TGA signals served to further support the altered membrane composition and structure due to the H2SO4 treatment. In the case of dissolution, the corresponding chemical changes (analytical techniques) were supported by the decreased peak intensities of FTIR spectra, IEC measurements and TGA signals associated with degradation of the polymer backbone. It was shown that the stability of the blended membranes depended on the composition (blend components) of the membrane and the effective cross-linking (interaction) between the blend components. For all three groups examined, it became apparent that blend components sFS and sPSU were, for example, more stable than sPEEK and that ionical cross-linking seemed more effective than covalent cross-linking of blend components. When considering all membranes tested, the non-PBI based blend membranes consisting of (s)PSU and PFS copolymers in the presence of fluorinated cross-linkers and the PBIOO-sPSU blended membranes including most of the F6-PBI based membranes showed sufficient stability to be recommended for SO2 electrolysis. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
52

Characterisation of proton exchange membranes in an H₂SO₄ environment / Retha Peach

Peach, Retha January 2014 (has links)
In light of the world‟s growing demand for energy that is environmentally friendly and sustainable, energy sources such as hydrogen have been considered potential contenders. Hydrogen, which can be used for energy storage, can be produced efficiently by the membrane based Hybrid Sulfur (HyS) thermo-chemical process consisting of a decomposition and an electrolysis step. During the HyS electrolysis step, SO2 and H2O are converted to H2 and H2SO4, which implies that the proton exchange membranes (PEMs) to be used for this process should have a high proton conductivity, limited SO2 cross-over and good H2SO4 stability. In order to find alternatives to the costly and high-temperature unstable Nafion®, the aim of this study was to evaluate the H2SO4 stability of various novel membranes. To structure the study, the novel PEM materials were grouped according to the PBI-type base component within the blend membranes, resulting in three groups comprising non-PBI based membranes, PBIOO based membranes and F6-PBI based membranes. Nafion®212 was included as reference PEM. By repeating the H2SO4 treatment with three different Nafion®212 samples, the obtained Nafion® data was also used to determine the experimental and analytical error margins for the study. The stability of all membranes was determined by submerging the membrane samples in 80 wt% H2SO4 at 80 °C for 120 hours. To determine the influence of the acid on the membranes, all samples were characterised before and after the H2SO4 treatment and compared in terms of their acid stability. Physical characterisation of the PEMs included the evaluation of weight and thickness changes, while IEC, SEM-EDX, FTIR and TGA were used to elucidate possible chemical changes due to the H2SO4 treatment. According to the Nafion®212 data, which had been obtained in triplicate for each of the analytical techniques, the experimental error of both the analytical and H2SO4 treatment remained below 10 %, except for the SEM-EDX sulfur-content where significantly larger errors were observed. In spite of the high error margins of the SEM-EDX data (S-content), its results, combined with the results from the other analytical techniques, resulted in a better understanding (both physical and chemical) of the effect the H2SO4 had on the membrane. This further facilitated the evaluation and comparison of the various blended PEM materials in terms of their H2SO4 stability, and the subsequent relation obtained between the observed stability and the chemical constitution and cross-linking of the membranes. After the 80 wt% H2SO4 treatment, significant weight losses were reported for the non-PBI based and PBIOO based membrane groups in comparison with the minimal changes noted for the F6-PBI based group and Nafion®212. Furthermore, significant thickness changes were reported for most of the PBIOO based membranes. The small weight and thickness changes observed for the F6-PBI confirmed the improved stability of this group of membranes in an H2SO4 environment, most likely due to the protective role of the partially fluorinated basic polymer and the known strength of the C-F bonds present. The results showed a clear correlation between the H2SO4 stability and the specific polymers present in the PEM blends investigated. Specific effects found included sulfonation, salt formation, hydrolysis and the accompanied dissolution of membrane fragments. Significant physical changes, for example ascribed to sulfonation of the concerned polymers, were supported by increased IEC measurements and peak intensities of the FTIR spectra, corresponding to the additional –SO3H groups present, while a variation in TGA signals served to further support the altered membrane composition and structure due to the H2SO4 treatment. In the case of dissolution, the corresponding chemical changes (analytical techniques) were supported by the decreased peak intensities of FTIR spectra, IEC measurements and TGA signals associated with degradation of the polymer backbone. It was shown that the stability of the blended membranes depended on the composition (blend components) of the membrane and the effective cross-linking (interaction) between the blend components. For all three groups examined, it became apparent that blend components sFS and sPSU were, for example, more stable than sPEEK and that ionical cross-linking seemed more effective than covalent cross-linking of blend components. When considering all membranes tested, the non-PBI based blend membranes consisting of (s)PSU and PFS copolymers in the presence of fluorinated cross-linkers and the PBIOO-sPSU blended membranes including most of the F6-PBI based membranes showed sufficient stability to be recommended for SO2 electrolysis. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
53

3D proteomics : analysis of proteins and protein complexes by chemical cross-linking and mass spectrometry

Chen, Zhuo A. January 2011 (has links)
The concept of 3D proteomics is a technique that couples chemical cross-linking with mass spectrometry and has emerged as a tool to study protein conformations and protein-protein interactions. In this thesis I present my work on improving the analytical workflow and developing applications for 3D proteomics in the structural analysis of proteins and protein complexes through four major tasks. I. As part of the technical development of an analytical workflow for 3D proteomics, a cross-linked peptide library was created by cross-linking a mixture of synthetic peptides. Analysis of this library generated a large dataset of cross-linked peptides. Characterizing the general features of cross-linked peptides using this dataset allowed me to optimize the settings for mass spectrometric analysis and to establish a charge based enrichment strategy for cross-linked peptides. In addition to this, 1185 manually validated high resolution fragmentation spectra gave an insight into general fragmentation behaviours of cross-linked peptides and facilitated the development of a cross-linked peptide search algorithm. II. The advanced 3D proteomics workflow was applied to study the architecture of the 670 kDa 15-subunit Pol II-TFIIF complex. This work established 3D proteomics as a structure analysis tool for large multi-protein complexes. The methodology was validated by comparing 3D proteomics analysis results and the X-ray crystallographic data on the 12-subunit Pol II core complex. Cross-links observed from the Pol II–TFIIF complex revealed interactions between the Pol II and TFIIF at the peptide level, which also reflected the dynamic nature of Pol II-TFIIF structure and implied possible Pol II conformational changes induced by TFIIF binding. III. Conformational changes of flexible protein molecules are often associated with specific functions of proteins or protein complexes. To quantitatively measure the differences between protein conformations, I developed a quantitative 3D proteomics strategy which combines isotope labelling and cross-linking with mass spectrometry and database searching. I applied this approach to detect in solution the conformational differences between complement component C3 and its active form C3b in solution. The quantitative cross-link data confirmed the previous observation made by X-ray crystallography. Moreover, this analysis detected the spontaneous hydrolysis of C3 in both C3 and C3b samples. The architecture of hydrolyzed C3-C3(H2O) was proposed based on the quantified cross-links and crystal structure of C3 and C3b, which revealed that C3(H2O) adopted the functional domain arrangement of C3b. This work demonstrated that quantitative 3D proteomics is a valuable tool for conformational analysis of proteins and protein complexes. IV. Encouraged by the achievements in the above applications with relatively large amounts of highly purified material, I explored the application of 3D proteomics on affinity purified tagged endogenous protein complexes. Using an on-beads process which connected cross-linking and an affinity purification step directly, provided increased sensitivity through minimized sample handling. A charge-based enrichment step was carried out to improve the detection of cross-linked peptides. The occurrence of cross-links between complexes was monitored by a SILAC based control. Cross-links observed from low micro-gram amounts of single-step purified endogenous protein complexes provided insights into the structural organization of the S. cerevisiae Mad1-Mad2 complex and revealed a conserved coiled-coil interruption in the S. cerevisiae Ndc80 complex. With this endeavour I have demonstrated that 3D proteomics has become a valuable tool for studying structure of proteins and protein complexes.
54

NMR Spectroscopy of the Tau-Microtubule Interaction

Kadavath, Harindranath 15 January 2014 (has links)
No description available.
55

Analytical and morphological studies of polymer-stabilised liquid crystals

Brittin, Mark January 1999 (has links)
No description available.
56

The biosynthesis and membrane integration of P2X₂ at the endoplasmic reticulum

Cross, Benedict C. S. January 2008 (has links)
A crucial step in the biosynthesis of membrane proteins is their incorporation into the hydrophobic environment of the lipid bilayer. In eukaryotic cells this event occurs largely in concert with translation on ribosomes bound to the membrane of the endoplasmic reticulum (ER) at a site termed the ER translocon. This dynamic proteinaceous complex forms an aqueous conduit across the ER membrane and is laterally gated to allow transmembrane (TM) segments to partition into the lipid phase. In the case of polytopic membrane proteins, the coordinated release of multiple TM segments by the ER translocon is a poorly defined process and appears to be highly substratespecific. In this study, the ion channel subunit P2X2 was used as a novel model to examine themolecular details of membrane protein integration at the ER translocon. A primarily in vitro approach was taken using stable biosynthetic intermediates to simulate each stage of the membrane translocation and integration of P2X2. Chemical and photoreactive site-specific cross-linking analyses were then conducted to determine the molecular environment of the P2X2 TM segments throughout biosynthesis. Remarkably, both TM1 and TM2 of P2X2 were found to remain directly adjacent to the ER translocon throughout P2X2 biosynthesis and were only dislocated into the lipid phase by artificial termination of translation and disruption of the ribosome-translocon interaction. Retention of P2X2 TM1 at the ER translocon is maintained despite the synthesis of over 300 amino acid residues separating it from the ribosome peptidyl transferase centre. Premature dislocation of TM1 from the ER translocon site resulted in a pronounced aggregation of TM1 fragments both in vitro and in vivo. This is in stark contrast to previous passive-partitioning models of membrane integration and suggests that the ER translocon regulates the integration of polytopic membrane proteins in order to accommodate the specific requirementsof the substrate protein itself. The detailed characterisation of P2X2 biosynthesis was then exploited in order to examine the effect of a novel small inhibitor of ER translocon function. Eeyarestatin 1 (ESI) was found to cause a substantial inhibition of protein secretion in vivo and dramatically reduced the ER translocation of three distinct classes of substrate, including P2X2, in vitro. Using both a cross-linking analysis and a protease-protection assay for a specialised translocation reaction, ESI was shown to prevent the transfer of the nascent polypeptide chain from the membrane delivery machinery to the ER translocon complex. Further evidence that ESI targets the Sec61 complex is presented and a model for ESI-mediated inhibition of ER translocation is suggested. Taken together these data establish ESI as a novel small molecule inhibitor that selectively inhibits protein translocation both in vitroand in vivo.
57

Morphologie et propriétés mécaniques de films lubrifiants auto-assemblés réticulés en milieu aqueux

Lagleize, Jeanne Marie 15 December 2010 (has links)
Ce travail s’intéresse au renforcement mécanique de films lubrifiants auto-assemblés en milieu aqueux par réticulation. Deux stratégies ont été suivies. La première consiste à réticuler physiquement un film de tensioactifs cationiques par coadsorption d’un copolymère associatif anionique. La deuxième est de réticuler chimiquement un film de copolymères triblocs par la création de liaisons covalentes entre les différentes macromolécules. Nous étudions l’auto-assemblage des films par microbalance à cristal de quartz et microscopie à force atomique (AFM). Nous discutons ensuite les effets de la réticulation sur la morphologie des films (caractérisée par AFM), et sur leurs propriétés mécaniques mesurées avec l’appareil à mesure de force SFA-nanotribomètre. Cette étude a montré que dans les deux cas, la réticulation modifie les propriétés des films lubrifiants et permet une augmentation de la cohésion des films adsorbés. / In this work, we study the effect of cross-linking on boundary lubricant films in aqueous media. Two strategies have been followed. First, we investigate a physical network on a cationic surfactant bilayer by coadsorption of an anionic copolymer. Secondly a tribloc copolymer film was chemically cross-linked by creating some chemical bounds between macromolecules. We study film self-assembling by Quartz Crystal Microbalance and Atomic Force Microscopy. We discuss then on the effect of cross-linking on the morphology of the film and its mechanical properties by combining AFM and Surface Force Apparatus SFA-nanotribometer. We have shown that in both cases, lubricant films properties are modified and the cohesion of the adsorbed films is increased by cross-linking.
58

A kinetic study of the degradation of hyaluronic acid at high concentrations of sodium hydroxide

Lekander, Maria, Fagerström Troncoso, Jonathan, Idjbara, Abdelrahman, Karlsson, Ida, Lindgren, Teresia, Ström, Simon January 2016 (has links)
During production of different Hyaluronic acid (HA) products Galderma use a high concentration of NaOH in the crosslinking process of HA. HA’s degradation kinetics are widely unknown at higher pH’s and is interesting for the future of product development of HA. Static Light Scattering (SLS) was used to determine the weight average molecular weight (MW ) of samples with four different NaOH concentrations, four temperatures, three reaction times and one t0  sample. The results were evaluated in forms of Arrhenius-graphs for different NaOH concentrations, the activation energy (EA ) with respect to pH and the reaction rate for each temperature with respect to NaOH concentration. It was found that the degradation of HA was more strongly affected by temperature than by NaOH concentration and that the EA  did not show any significant signs of change between higher concentrations of NaOH.
59

New insights into principles of scaffolds design for bone application

Yan, Hongji January 2016 (has links)
This thesis presents deeper insights into bone applicable biomaterials’ design. Poor affinity of BMP-2 towards scaffolds required supra-physiological dose administration. Though molecules containing sulfate could sustain BMP-2 release, side effects occurred due to BMP-2 supra-dose, or these sulfate-containing biomolecules. Improved affinity between BMP-2 and scaffolds was first witnessed by using an acidic carrier (paper I). Hyaluronic acid (HA) hydrazone derived hydrogels having a pH of 4.5-loaded BMP-2 showed sustained release of bioactive BMP-2 in vitro and enhanced bone formation in vivo, while pH 7 HA hydrogels showed Fickian behavior and less bone formation in vivo. Computational evaluation revealed stronger electrostatic interactions between BMP-2, and HA were predominant at pH 4.5, whereas, weaker Van der Waals interactions played a key role at pH 7. During the pre-bone formation phase, endogenous cell responses to pH 4.5 and 7 with or without BMP-2 were investigated. HA hydrogels exhibited extraordinary biocompatibility and recruitment of neutrophils, monocytes, macrophages and stromal cells regardless of hydrogels’ pH and BMP-2 presence.  The different inflammatory responses to HA hydrogels were observed (Appendix). Thiol derivatives can cleave the disulfide bond of BMP-2 to generate inactive monomeric BMP-2. In paper II, thiol-acrylate chemistry-based HA hydrogels (HA-SH) were compared to hydrazone-based HA hydrogels as BMP-2 carriers. Thiol modified HA disrupted BMP-2 integrity and bioactivity. HA-SH hydrogels with BMP-2 exhibited less bioactive BMP-2 release in vitro and induced less bone formation in vivo. Accumulated evidence has shown great osteogenic potential of lithium ions (Li). In paper III, we coordinated Li onto HA-PVA hydrazone hydrogels (Li-gel); Li-gel enhanced 3D cultured hMSCs osteogenic differentiation and induced higher bone formation in CAM defect model. Instead of BMP-2 protein, delivery of BMP-2-coding-plasmid can produce BMP-2 over a long term at a closer physiological level. Yet, efficient gene delivery reagents are needed. In paper IV, two novel gene delivery nanoplexes were developed by post coating DNA-nanoplexes with chondroitin sulfate (CS). To ensure the stability, aldehyde-modified CS (CS-CHO) reacted with free amines of pDNA/PEI complexes. We provided first evidence that CS-CHO coated nanoplexes controlled the release from endosomes, which is essential for higher transfection efficiency.
60

South African experience with cross-linked ultrahigh molecular weight polyethylene in total hip arthroplasty

Cakic, Josip Nenad 21 October 2009 (has links)
Ph.D.,Dept. of Orthopaedic Surgery, Faculty of Health Sciences, University of the Witwatersrand, 2009. / Total hip replacement (THR) is an effective method of treatment for patients with hip disability. The procedure is capable of providing long-term functional improvement with excellent control of pain and restoration of function. Sir J Charnley developed a concept of low friction arthroplasty, which was based on use of ultra-high molecular weight polyethylene acetabular and stainless steel femoral components. The components were attached to bone with the use of polymethylmethacrylate (PMMA) bone cement. This concept has been very successful, and is considered the gold standard of THR. Aseptic loosening of the prosthetic components remains the single most important reason for failure of THRs. Wear to the ultra high molecular weight polyethylene (UHMWPE) acetabular cup is a well-known cause of osteolysis and aseptic loosening of the components. Thus, substantial improvement to the wear resistance of UHMWPE could extend the clinical life span of total hip replacements. In an attempt to reduce polyethylene wear and subsequent osteolysis, a method was developed in the early seventies in South Africa to improve polyethylene quality by means of gamma ray cross-linking. The acetabular cup was irradiated with 100 Kilogray in an acetylene environment, which was used as a cross-linking gas material, resulting in improvement of UHMWPE wear resistance. Influenced by the world trend and with the advent of a ceramic bearing surface, the Project of cross-linking was, to a certain extent, forgotten. Patients followed up in the late 1990s, showed minimal or total absence of wear after 15 years or longer. 3 Based on my preliminary studies, and anticipating the world trend of acceptance of cross- link UHMWPE, the aim of this research is to consolidate the results from the largest long term group of patients with acetylene cross-link UHMWPE, to study polyethylene gamma irradiated in the presence of a cross-linking acetiylene gas and the effects of it, in vitro, using a hip simulator. I was planning to communicate with as many patients as possible from the group operated on from 1977 until 1983 in whom cross-link UHMWPE was used. This group of over thousand patients represents the largest group of patients with cross-linked UHMWPE acetabular components in the world, with the longest clinical follow up of over 20 years on average. The first part of the research is a retrospective study: The goal was to contact as many patients as possible who were operated on during the period 1977 to 1983 when cross-linked polyethylene was used. To qualified for the study each patient had to have an early postoperative and the latest follow up radiograph. The radiological study consisted of the radiological measurement of wear. For this purpose the Hip Analysis Suite program was used. This is a software program designed by Dr John M. Martell from the University of Chicago, which is widely used and internationally accepted for that purpose. Image analysis offers significant improvements in reproducibility and accuracy when compared to manual analysis. 4 The final results were compared with results of polyethylene wear in patients in whom conventional UHMWPE was used. For this comparison only patients with acetabular components made from the same UHMWPE material and from the same supplier were used. The conventional UHMWPE is a component of the gold standard of hip replacement surgery. World-wide published follow up studies of 15 years and longer using conventional UHMWPE were compared to the cross-link UHMWPE group. If revision surgery was indicated for whatever reason in patients in with cross-linked UHMWPE acetabular components, the retrieved prosthesis was analyzed. The analysis consisted of examination of the articular surface of the cross-linked acetabular component for micro wear phenomena using a Scanning Electron Microscope (SEM). In order to perform an objective analysis of the retrieved components, two independent laboratories were used, namely: Peterson Tribology Laboratory, Loma Linda University, California, and Biomechanical Laboratory, Faculty of Engineering, University of Pretoria. The analyses were possible thanks to collaboration with Dr Ian Clark from Peterson Tribology Laboratory and Dr NDL Burger in charge of the Biomechanical Laboratory at the Department of Engineering, University of Pretoria

Page generated in 0.1984 seconds