Spelling suggestions: "subject:"cryogenics"" "subject:"cryogenic""
11 |
Magnetic levitation as a suspension mechanism for cryogenic storage of hydrogen / Raymond HomanHoman, Raymond David January 2012 (has links)
Current physical supports used in cryogenic storage vessels, in which liquid hydrogen is stored, conduct heat from the environment to the liquid hydrogen which causes the hydrogen temperature to rise and ultimately leads to hydrogen losses due to boil-off.
The focus of this study is to investigate magnetic levitation as a possible suspension mechanism, eliminating the use of current physical supports and so doing reducing hydrogen losses due to boil-off.
A conceptual design of a container which makes use of magnetic suspension is presented in this study. The concept is validated on the basis of the forces obtainable between a paramagnetic aluminium plate and an electromagnet, as well as the forces obtainable between a neodymium magnet and a bulk Yttrium-Barium-Copper-Oxide superconductor.
The forces between the paramagnetic aluminium plate and electromagnet were determined mathematically and tested experimentally. The forces between the magnet and superconductor were determined mathematically and by finite element modelling and simulations using ANSYS Multiphysics. The results obtained in the mathematical- and finite element studies were then validated experimentally.
It was found that the forces obtained experimentally between the aluminium plate and electromagnets are inadequate for magnetic suspension of the inner vessel given in the conceptual design. It was also found that the forces obtained experimentally and in the simulation studies for the magnet and superconductor of this study were inadequate due to shortcomings in the magnet and superconductor obtained for experimental tests.
The conclusion of this study is that electromagnetic levitation should not be used as a magnetic suspension mechanism for storage of liquid hydrogen. It is also concluded that superconducting levitation can not be used as a suspension mechanism for the concept presented in this study, unless the methods suggested to increase the levitation forces between the neodymium magnet and superconductor are executed. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
|
12 |
Magnetic levitation as a suspension mechanism for cryogenic storage of hydrogen / Raymond HomanHoman, Raymond David January 2012 (has links)
Current physical supports used in cryogenic storage vessels, in which liquid hydrogen is stored, conduct heat from the environment to the liquid hydrogen which causes the hydrogen temperature to rise and ultimately leads to hydrogen losses due to boil-off.
The focus of this study is to investigate magnetic levitation as a possible suspension mechanism, eliminating the use of current physical supports and so doing reducing hydrogen losses due to boil-off.
A conceptual design of a container which makes use of magnetic suspension is presented in this study. The concept is validated on the basis of the forces obtainable between a paramagnetic aluminium plate and an electromagnet, as well as the forces obtainable between a neodymium magnet and a bulk Yttrium-Barium-Copper-Oxide superconductor.
The forces between the paramagnetic aluminium plate and electromagnet were determined mathematically and tested experimentally. The forces between the magnet and superconductor were determined mathematically and by finite element modelling and simulations using ANSYS Multiphysics. The results obtained in the mathematical- and finite element studies were then validated experimentally.
It was found that the forces obtained experimentally between the aluminium plate and electromagnets are inadequate for magnetic suspension of the inner vessel given in the conceptual design. It was also found that the forces obtained experimentally and in the simulation studies for the magnet and superconductor of this study were inadequate due to shortcomings in the magnet and superconductor obtained for experimental tests.
The conclusion of this study is that electromagnetic levitation should not be used as a magnetic suspension mechanism for storage of liquid hydrogen. It is also concluded that superconducting levitation can not be used as a suspension mechanism for the concept presented in this study, unless the methods suggested to increase the levitation forces between the neodymium magnet and superconductor are executed. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
|
13 |
Non-linear dynamics in nano-electromechanical systems at low temperatures / Dynamique non-linéaire dans les systèmes nano-électromécanique à basses températuresDefoort, Martial 16 December 2014 (has links)
L'étude des systèmes non-linéaires ouvre un large champ d'investigation en recherche fondamentale, dans cette optique les Systèmes Nano-Electro-Mécanique (NEMS) sont des outils de premier choix. Ce manuscrit met en avant l'utilisation des propriétés non-linéaires de nano-résonateurs pour la physique fondamentale. À la suite d'une calibration rigoureuse de notre dispositif expérimental, nous avons caractérisé les principaux paramètres associés à la résonance de nos structures avec, en particulier, la non-linéarité de Duffing qui est à la source des mécanismes de couplage entre les différents modes de notre système. Une nouvelle procédure expérimentale utilisant une excitation à deux tons est présentée, émergeant du couplage entre modes mais en stimulant un seul mode résonant : un système de détection à haute précision de la résonance de la structure. Le régime de Duffing engendre également l'ouverture d'une hystérésis au sein de la courbe de résonance du NEMS, configuration qui est alors utilisée comme système modèle pour le phénomène de bifurcation. Nous démontrons, numériquement et expérimentalement, que le comportement non-linéaire et les lois de puissances universelles décrites par la théorie sont valides au-delà des prédictions attendues. Différentes techniques expérimentales sont finalement présentées, utilisant les NEMS afin de détecter des caractéristiques fondamentales de la matière condensée, comme les signatures des systèmes à deux niveaux présents au sein des nano-résonateurs ou les propriétés de glissement dans un gaz raréfié. / The investigation of non-linear dynamics intrinsically opens access to a broad field of researches, and Nano-Electro-Mechanical Systems (NEMS) are valuable tools for this purpose. In the present manuscript, we emphasize the fundamental applications of non-linear nano-resonators for condensed matter. After a careful calibration of our peculiar experimental set-up, we characterize the relevant parameters associated to the resonance of our devices, notably the Duffing non-linearity which is the essence of coupling mechanisms between distinct modes of the system. We present a new scheme emerging from the mode-coupling technique, using a two-tone drive but actuating a single flexural mode: a high precision detection procedure of the initial resonator's response. The Duffing regime also opens an hysteresis within the resonance line of the NEMS, and the device is then employed as a model system for the associated bifurcation process. We explored numerically and experimentally this physical phenomenon and found that both the non-linear behaviour and the universal power laws described in the general theory are still valid far beyond any analytical predictions. We finally describe different techniques using NEMS as sensors to measure fundamental features of condensed matter physics, like signatures of two level systems within the resonator's material or slippage in a rarefied gas.
|
14 |
Développement d'un réfrigérateur à dilution en boucle fermée pour expériences d'astrophysique dans l'espace / Development of a closed cycle dilution refrigerator for astrophysical experiments in space.Volpe, Angela 31 January 2014 (has links)
Plusieurs missions sur satellite sont proposées pour résoudre un grand nombre de questions sans réponse concernant l'univers. Les instruments sur certaines de ces missions nécessitent des températures inférieures à 0,1 K pour fonctionner efficacement. Cette exigence signifie que la chaîne de refroidissement est un élément crucial de la conception du satellite. Les spécifications cryogéniques de ces futures missions sont plus exigeantes que l'état de l'art actuel : elle auront besoin d'une puissance frigorifique plus élevée à une température inférieure et avec à une durée de vie prolongée de 5 à 10 ans. Cela a motivé le développement d'un réfrigérateur à dilution 3He-4He en boucle fermée. Cette conception est basée sur le réfrigérateur à dilution à cycle ouvert utilisé sur le satellite Planck, dont la durée de vie et la puissance frigorifique ont été limitées par la quantité d'3He et d'4He à bords, le mélange étant éjecté dans l'espace après le processus de dilution . Pour surmonter ces limitations, le cycle a été fermé par la séparation des isotopes de l'hélium à basse température avant de les réinjecter dans le réfrigérateur . Cette thèse décrit les progrès réalisés dans le développement et dans la compréhension de ce nouveau système, et montre que les exigences de refroidissement (1 µW à 50 mK) peuvent être satisfaites dans les conditions requises. Ce travail tente également de résoudre un problème lié à la micro-gravité : la séparation de phase liquide-vapeur dans le bouilleur. Nos résultats expérimentaux montrent que le confinement du liquide dans le bouilleur dans les conditions requises et en gravité négative est possible. Ces résultats ont guidé la conception d'un nouveau bouilleur non-sensible à la gravité, dernière étape du développement d'un réfrigérateur à dilution en boucle fermée adapté à la micro-gravité. / Several satellite missions are being proposed to resolve many of the unanswered questions regarding the universe. Instruments on some of these missions will require temperatures below 0.1 K to operate effectively. This requirement means that the cooling chain is a crucial element of the satellite's design. The cryogenic specifications of these future missions are more demanding than the current state of the art: they will require a higher cooling power at a lower temperature for an extended lifetime of 5-10 years. This has motivated the development of a closed-cycle 3He-4He dilution refrigerator. This design is based on the open-cycle dilution refrigerator used on the Planck satellite, whose lifetime and cooling power were limited by the on-board supply of 3He and 4He, since the mixture was ejected into space after the dilution process. To overcome these limitations, the cycle has been closed by separating the helium isotopes at low temperatures before re-injecting them into the refrigerator. This thesis describes the progress in the development and in the comprehension of this new system and shows that the cooling requirements (1 µW at 50 mK) can be met under the required conditions. This work also attempts to solve a problem related to a micro-gravity environment: the vapor-liquid phase separation in the still. Our experimental results show that liquid confinement in the still under the required conditions and negative-gravity is possible. These results have driven the design of a novel gravity-insensitive still, the last step in developing a closed-cycle dilution refrigerator adapted to zero-gravity.
|
15 |
Cryogenic refrigeration using an acoustic stirling expander.Emery, Nick January 2011 (has links)
A single-stage pulse tube cryocooler was designed and fabricated to provide cooling at 50 K for a high temperature superconducting (HTS) magnet, with a nominal electrical input frequency of 50 Hz and a maximum mean helium working gas pressure of 2.5 MPa. Sage software was used for the thermodynamic design of the pulse tube, with an initially predicted 30 W of cooling power at 50 K, and an input indicated power of 1800 W. Sage was found to be a useful tool for the design, and although not perfect, some correlation was established. The fabricated pulse tube was closely coupled to a metallic diaphragm pressure wave generator (PWG) with a 60 ml swept volume. The pulse tube achieved a lowest no-load temperature of 55 K and provided 46 W of cooling power at 77 K with a p-V input power of 675 W, which corresponded to 19.5% of Carnot COP. Recommendations included achieving the specified displacement from the PWG under the higher gas pressures, design and development of a more practical co-axial pulse tube and a multi-stage configuration to achieve the power at lower temperatures required by HTS.
|
16 |
DESIGN AND ANALYSIS OF A CRYOGENIC PRESSURE VESSEL : Design and analysis of a static and standing pressure vessel, specifically for liquid methanedel Mar Diaz del Pino, Maria, Cuadrado Mesa, Francisco Javier January 2010 (has links)
The project is a research on liquid methane. It is stored in a standing and static pressure vessel specially calculated for cryogenic purposes. All the simulations have been done using the finite element method. The finite element method (FEM) or finite element analysis (FEA) is a numerical technique to find approximate solutions for partial differential equations and it is used to simulate the strength of materials. FEM allows the user to visualize the distribution of stresses and displacements. There is a wide range of software to do FEM simulations, the software chosen for the project is Pro/Engineer Wildfire 4.0. Pro-Engineer is a CAD/CAM/CAE software developed by Parametric Technology Corporation (PTC). It provides solid modeling, assembly modeling and finite element analysis. The results obtained in the mechanical analysis executed with the application Pro-mechanica show that the designed container holds the loads applied and stands stable. The thermal analysis of the insulation verifies that the amount of heat exchanged with the environment is on acceptable levels. Finally, to protect the integrity of the structure the proper paints have been selected.
|
17 |
Modélisation et contrôle des grands réfrigérateurs cryogéniques / Modelling and control of large cryogenic refrigeratorBonne, François 12 December 2014 (has links)
Ce manuscrit de thèse s'intéresse à la modélisation et au contrôle des réfrigérateurs cryogéniques. Le cas particulier des réfrigérateurs soumis à de fortes variations de charges thermiques est étudié. Un modèle de chaque objet pouvant se trouver dans un réfrigérateur est proposé. La méthodologie d'assemblage pour obtenir le modèle des sous-systèmes qui composent le réfrigérateur est présenté, accompagnée de la méthode permettant d'obtenir une approximation linéaire des modèles des sous-systèmes. Grâce aux modèles développées, des lois de commande avancées sont synthétisées. Un contrôleur linéaire quadratique pour les stations de compression à deux ou trois niveaux de pression est proposé, ainsi qu'un contrôleur prédictif sous contrainte pour la boite froide. La particularité de ces stratégies de contrôle est qu'elles sont compatibles avec un automate programmable industriel (API) , doté d'une capacité de calcul et de stockage de donnée réduite. La capacité de prédiction en boucle ouverte du modèle développé est validé au regard de données expérimentales et les stratégies de contrôle sont validés en simulation et expérimentalement sur la station d'essais 400W@1.8K du SBT et sur la station de compression du LHC, au CERN. / This manuscript is concern with both the modeling and the derivation of control schemes for large cryogenic refrigerators. The particular case of those which are submitted to highly variable pulsed heat load is studied. A model of each objet that normally compose a large cryorefrigerator is proposed. The methodology to gather objects model into the model of a subsystem is presented. The manuscript also shows how to obtain a linear equivalent model of the subsystem. Based on the derived models, advances control scheme are proposed. Precisely, a linear quadratic controller for warm compression station working with both two and three pressures state is derived, and a predictive constrained one for the cold-box is obtained. The particularity of those control schemes is that they fit the computing and data storage capabilities of Programmable Logic Controllers (PLC) with are well used in industry. The open loop model prediction capability is assessed using experimental data. Developed control schemes are validated in simulation and experimentally on the 400W@1.8K SBT's cryogenic test facility and on the CERN's LHC warm compression station.
|
18 |
Computational Simulations to Aid in the Experimental Discovery of Ice Recrystallization Inhibitors and Ultra-Microporous Metal Organic FrameworksDe Luna, Phil January 2015 (has links)
In this thesis computational chemistry has been used to accelerate experimental discovery in the fields of ice recrystallization inhibitors for cryopreservation and ultra-microporous MOFs for carbon dioxide capture and storage. Ice recrystallization is one of the leading contributors to cell damage and death during the freezing process. This occurs when larger ice crystal grains grow at the expense of smaller ones. Naturally occurring biological antifreeze molecules have been discovered but only operate up to -4oC and actually exasperate the problem at temperatures lower than this. Recently, the group of Dr. Robert Ben have been successful in synthesizing small organic molecules which are capable of inhibiting the growth of ice crystals during the freezing process. They have built a library of diverse compounds with varying functionalities and activity. Chemical intuition has been unsuccessful in finding a discernible trend with which to predict activity. Herein we present work where we have utilized a quantitative structure activity relationship (QSAR) model to predict whether a molecule is active or inactive. This was built from a database of 124 structures and was found to have a positive find rate of 82%. Proposed molecules that had yet to be synthesized were predicted to active or inactive using our method and 9/11 structures were indeed active which is strikingly consistent to the 82% find rate. Our efforts to aid in the discovery of these novel molecules will be described here. Metal organic frameworks (MOFs) are a relatively new class of porous materials which have taken the academic community by storm. These three-dimensional crystalline materials are built from a metal node and an organic linker. Depending on the metals and organic linkers used, MOFs can possess a vast range of topologies and properties that can be exploited for specific applications. Ultra-microporous MOFs possess relatively small pores in the range of 3.5 Å to 6 Å in diameter. These MOFs have some structural advantages compared to larger pored MOFs such as molecular sieving, smaller pores which promote strong framework-gas interactions and cooperative effects between guests, and longer shelf-life due to small void volumes and rigid frameworks. Here we present newly synthesized ultra-microporous MOFs based on isonicotnic acid as the organic linker with Ni and Mg as the metal centre. Despite having such small pores, Ni-4PyC exhibits exceptionally high CO2 uptake at high pressures. Furthermore, Mg-4PyC exhibits novel pressure dependent gate-opening behaviour. Computational simulations were employed to investigate the origin of high CO2 uptake, predict high pressure (>10bar) isotherms, quantify CO2 binding site positions and energies, and study uptake-dependent linker dynamics. This work hopes to provide experimentalists with some explanation to these interesting unexplained phenomena and also predict optimal properties for new applications.
|
19 |
Nerezové oceli pro kryogenické aplikace zpracované 3D tiskem / Stainless steels for cryogenic applications processed by 3D printingGrygar, Filip January 2021 (has links)
This thesis deals with properties of austenitic stainless steel 304L processed by SLM technology and tested at room and cryogenics temperatures. Result is description of mechanical properties and microstructure. First step was to develop processing parameters to achieve porosity of prints fell below 0,01 %. Following tensile test showed higher yield and ultimate tensile strength than conventionally fabricated parts, even at temperature -80 °C, but at cost of reduced ductility. Due to deformation and low temperature austenite transformed into martensite. This transformation also occurred in Charpy toughness test, that resulted in ductile to brittle behaviour.
|
20 |
Návrh a ověření nízkoteplotní části UHV - STM mikroskopu / Design and verification of low temperature part of UHV – STM microscopeVoňka, Jakub January 2013 (has links)
The diploma thesis addresses the design and experimental verification of cooling system and low temperature part of UHV - STM working in temperature range of 20K - 300K. Due to the demand of variable temperature, the flow cooling system with cryogenic (~5 K) helium (He) is used. Two variants of the low temperature part of the microscope are studied. First the version with cooling only the sample holder, and second with cooling of the whole STM. Designed cooling system consists of He flow cryostat allowing to connect it to the Dewar vessel with liquid helium (LHe) using a low-loss transfer line. The cryostat consists of He inlet and outlet, heat exchangers and copper strains (i.e. braids) for the thermal connection of the sample holder/STM and radiation shield around the STM with the heat exchangers. The thesis describes the design of the flow cryostat and its initial tests in the designed vacuum chamber. Heat flow through a spot contact is also discussed to estimate thermal conductance of insulation supports based on thermal resistance of spherical contacts. The thesis was elaborated in collaboration with the Institute of Scientific Instruments of the ASCR, v.v.i.
|
Page generated in 0.0296 seconds