• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 79
  • 78
  • 35
  • 14
  • 12
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 656
  • 102
  • 102
  • 72
  • 62
  • 61
  • 52
  • 48
  • 45
  • 39
  • 39
  • 37
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Crystallisation studies of biodiesel at extreme conditions

Liu, Xiaojiao January 2017 (has links)
Whilst biodiesel has many advantages as a renewable-energy fuel and as a substitute source of petroleum diesel, it suffers from poor performance at both low temperatures and high pressures. Not only does biodiesel crystallise at low temperatures below ~0 °C, but it also crystallises under the high pressures experienced in common-rail and injector systems within diesel engines. Crystalline solids induced by temperature and pressure can clog filters and injectors in the diesel engine, thereby causing engine failure. This thesis focuses on developing an enhanced understanding of the behaviour of biodiesel using a range of spectroscopy and diffraction techniques. The crystallisation behaviour of biodiesel at high pressure (0.1 GPa to 4 GPa) or low temperature (0 °C to -40 °C) was studied in this work. Structural phase transitions of the components of biodiesel induced by both temperature and pressure were observed. On account of the complex nature of biodiesel, it proved difficult to characterise these changes in biodiesel itself. Instead, one of the main components, methyl stearate, was therefore investigated. The crystallisation behaviour of methyl stearate is temperature-sensitive. A new polymorph of form II was successfully characterised by single crystal diffraction - by growing crystals from a saturated carbon disulfide solution at room temperature while data collection was conducted at 120 K. Form III was obtained by crystallisation from melt followed by slow cooling. Structural characterisation using single crystal diffraction showed disordered packing behaviour of the molecules in this form. The crystal structure of form IV was obtained using a combination of synchrotron X-ray powder diffraction and high resolution neutron powder diffraction. It was crystallised from the melt by quench cooling at low temperature. The thermal expansion behaviour of this form was also investigated in this work. Furthermore, a phase transition from form IV to form V was observed in neutron diffraction experiments for a fully deuterated sample, but no evidence for this transition was observed in X-ray diffraction studies. Due to the complexity of methyl stearate and the limitations of the experimental data, the crystal structure of form V was not solved. In addition to the temperature studies, the crystallisation behaviour of methyl stearate under variable pressure conditions was investigated in this work. A diamond-anvil cell was employed to generate high-pressure environments. Synchrotron high-pressure X-ray powder diffraction and Raman spectroscopy showed that pressures of as little as 0.1 GPa can induce form IV of methyl stearate to convert to form II. Four phase transitions in the pressure range of 0.1 GPa to 6.3 GPa were also observed. The phase behaviour of methyl stearate induced by pressure is reversible and form II was recovered when the pressure was released. The structure of these high-pressure phases of methyl stearate have still to be determined. High-pressure neutron powder diffraction experiments have also been conducted with form IV of methyl stearate using a Paris-Edinburgh Press. Fluorinert (FC-87) was employed as pressure-transmitting medium to generate hydrostatic condition. No evidence of a phase transition was observed in the pressure range up to 3.31 GPa.
232

Construção e avaliação de eletrodos de membrana sólida cristalina seletivos a cobre e prata / Construction and evolution copperand silver ion selective electrode based on crystalline solid membranes

Serrano, Silvia Helena Pires 12 February 1988 (has links)
O presente trabalho visou a construção e avaliação de eletrodos de membrana sólida cristalina seletivos a cobre e prata. Obteve-se o sulfeto de prata, material eletroativo usado na preparação de membranas seletivas a íons Ag+, por precipitação com gás sulfídrico em meio ácido. Eletrodos com membranas de 1,0 e 0,50 mm de espessura apresentaram respectivamente limites nernstianos de 10-4 e 10-5 Mol.L-1 e precisão de ± 0,1 e 1 mV nas leituras de potencial. Os sulfetos de cobre e prata, usados na preparação de membranas seletivas para determinação de cobre, foram obtidos por precipitação simultânea com gás sulfídrico, tioacetamida em meio ácido e tiouréia em meio amoniacal. Difratogramas de Raios X revelaram que o material obtido com tiouréia corresponde ao sulfeto ternário, Cu2S.3Ag2S ou Ag1,55Cu0,45S, responsável pela resposta seletiva do sensor em soluções de Cu2+. O eletrodo construído a partir deste sulfeto, onde o cobre aparece no estado monovalente, apresentou limite nernstiano da ordem de10-7Mol.L-1, fornecendo resultados satisfatórios na determinação deste metal em amostras de aguardente e álcool. Cálculos termodinâmicos mostraram que quando membrana é constituída de CuS, um contacto elétrico efetuado através de cobre ou prata é instável, uma vez que ocorre a formação de Cu2S. Os resultados experimentais conduziram a um novo modelo para explicar o mecanismo de resposta do eletrodo, o qual se baseia na reação: Cu2S (memb) + Cu2+ (sol) ↔ CuS (memb) + 2 Cu + (sol). A atividade de Cu+ na interface eletrodo / solução é controlada pela atividade de Cu2+ nas soluções de medida, de modo que o sensor funciona como um eletrodo de Cu2S/CuS em contacto com o sistema Cu2+/Cu+. / Present work deals with the assembling and testing of solid membrane electrodes for copper and silver. The silver sulphide used to prepare the membrane selective to Ag+ was precipitated with hydrogen sulphide in acidic medium. Electrodes 1,0 and 0,50 mm thick present Nernstian limits of 10-4 and 10-5 Mol.L-1 order with a ± 0,1 and 1 mV respectively. A mixture of silver sulphide and copper sulphides were used for the copper (II) selective electrode. This solid was prepared from Cu2+ and Ag+ in the same solution with hydrogen sulphide or thioacetamide both in acid medium and with thiourea in ammoniacal medium. X-Ray diffractograms shows that the solid prepared from thiourea solutions presents significant contribution of jalpaite Ag1,55Cu0, 45S (in fact Cu2S.3Ag2S). An important finding was the presence of copper (I) in the matrix and this has been also found to the responsible for the higher performance of this electrode with a limiting response to 10-7 Mol.L-1 copper (II). In fact thermodinamic calculation has show instability of a contact of Ag or Cu with CuS solid, as Cu2S must be formed in any case. On this basis, the theory of the electrode is based in the following reaction which takes place on the electrode surface: Cu2S (memb) +CU2+ (sol) ↔ CuS (memb) + 2 Cu+(aq) K = 10-13 M. On this basis the Cu+ activity at the electrode / solution interface is controled by the activity of Cu2+ of the solution and the Cu2+/ Cu+ system in contact with the solid matrix is defined.
233

Microstructural Evaluation of Hydrogen Embrittlement and Successive Recovery in Advanced High Strength Steel

Allen, Quentin Scott 01 December 2017 (has links)
Advanced high strength steels (AHSS) have high susceptibility to hydrogen embrittlement, and are often exposed to hydrogen environments in processing. In order to study the embrittlement and recovery of steel, tensile tests were conducted on two different types of AHSS over time after hydrogen charging. Concentration measurements and hydrogen microprinting were carried out at the same time steps to visualize the hydrogen behavior during recovery. The diffusible hydrogen concentration was found to decay exponentially, and equations were found for the two types of steel. Hydrogen concentration decay rates were calculated to be -0.355 /hr in TBF steel, and -0.225 /hr in DP. Hydrogen concentration thresholds for embrittlement were found to be 1.04 mL/100 g for TBF steel, and 0.87 mL/100g for DP steel. TBF steel is predicted to recover from embrittlement within 4.1 hours, compared to 7.2 hours in DP steel. A two-factor method of evaluating recovery from embrittlement, requiring hydrogen concentration threshold and decay rate, is explained for use in predicting recovery after exposure to hydrogen. Anisotropic hydrogen diffusion rates were also observed on the surface of both steels for a short time after charging, as hydrogen left the surface through <001> and <101> grains faster than grains with <111> orientations. This could be explained by differences in surface energies between the different orientations.
234

Characterization of sand processed for use in hydraulic fracture mining

Stark, Aimee Lizabeth 01 May 2016 (has links)
Each hydraulic fracturing well uses up to 5,000 tons of silica-containing sand, or proppant, during its operational lifetime. Over one million wells are currently in operation across the continental United States. The resulting increase in demand resulted in the production of 54 million metric tons of sand for use as hydraulic fracturing proppant in 2015. The goal of this study was to determine the relative risk of occupational exposure to respirable crystalline silica to workers performing tasks associated with mining, processing, and transport of proppant. Sand samples were aerosolized in an enclosed chamber. Bulk and respirable samples were submitted to a commercial lab for silica analysis. A risk ratio was calculated by comparing respirable dust concentrations to the current occupational safety regulations. Raw sand produced higher concentrations of respirable dust and a higher risk ratio (3.2), while processed dust contained higher percentages of respirable crystalline silica but a lower risk ratio (0.5). When vibration was introduced prior to aerosolization, concentrations tended to increase as vibration times increased, resulting in an increase of the associated risk ratio (2.3). Results of the study indicate that workers in sand mines and workers exposed to proppant that has undergone low-frequency vibration are at increased risk of exposure to respirable crystalline silica compared to workers who are exposed to proppant that has not undergone vibration.
235

Characterisation of preferred orientation in crystalline materials by x-ray powder diffraction.

Sitepu, Husinsyah January 1991 (has links)
Texture, i.e. preferred orientation, can cause large systematic errors in quantitative analysis of crystalline materials using x-ray powder diffraction (XRPD) data. Various mathematical forms have been proposed for the application of preferred orientation corrections. The most promising of these appears to be the single-parameter March (1932) model proposed by Dollase (1986).Li and O'Connor (1989) applied the March model to determine the level of preferred orientation in various gibbsites using two procedures. The first involved the Rietveld (1969) least squares pattern-fitting method. Each pattern was Rietveld-analysed in two ways, initially assuming random orientation of the crystallites and subsequently with the March model. The second procedure for preferred orientation analysis, described here as the line ratio method, determines preferred orientation factors according to the intensity ratios of carefully selected line pairs.In the thesis the procedures proposed by Li and O'Connor for texture analysis have been evaluated with XRPD data sets for molybdite, calcite and kaolinite. The results indicate that while the March formula improves agreement between the' calculated and measured patterns in Rietveld analysis, other forms of systematic error in the intensity data appear to limit the effectiveness of the March formula in general. It has been found also that the line ratio method improves agreement between the data sets, but less effectively than the Rietveld method. It is proposed that extinction is likely to be the most influential source of systematic error competing with texture.
236

Computational petrology: Subsolidus equilibria in the upper mantle

Sommacal, Silvano, silvano.sommacal@anu.edu.au January 2004 (has links)
Processes that take place in the Earth’s mantle are not accessible to direct observation. Natural samples of mantle material that have been transported to the surface as xenoliths provide useful information on phase relations and compositions of phases at the pressure and temperature conditions of each rock fragment. In the past, considerable effort has been devoted by petrologists to investigate upper mantle processes experimentally. Results of high temperatures, high pressure experiments have provided insight into lower crust-upper mantle phase relations as a function of temperature, pressure and composition. However, the attainment of equilibrium in these experiments, especially in complex systems, may be very difficult to test rigorously. Furthermore, experimental results may also require extrapolation to different pressures, temperatures or bulk compositions. More recently, thermodynamic modeling has proved to be a very powerful approach to this problem, allowing the deciphering the physicochemical conditions at which mantle processes occur. On the other hand, a comprehensive thermodynamic model to investigate lower crust-upper mantle phase assemblages in complex systems does not exist. ¶ In this study, a new thermodynamic model to describe phase equilibria between silicate and/or oxide crystalline phases has been derived. For every solution phase the molar Gibbs free energy is given by the sum of contributions from the energy of the end-members, ideal mixing on sites, and excess site mixing terms. It is here argued that the end-member term of the Gibbs free energy for complex solid solution phases (e.g. pyroxene, spinel) has not previously been treated in the most appropriate manner. As an example, the correct expression of this term for a pyroxene solution in a general (Na-Ca-Mg-Fe2+-Al-Cr-Fe3+-Si-Ti) system is presented and the principle underlying its formulation for any complex solution phase is elucidated.¶ Based on the thermodynamic model an algorithm to compute lower crust-upper mantle phase equilibria for subsolidus mineral assemblages as a function of composition, temperature and pressure has been developed. Included in the algorithm is a new way to represent the total Gibbs free energy for any multi-phase complex system. At any given temperature and pressure a closed multi-phase system is at its equilibrium condition when the chemical composition of the phases present in the system and the number of moles of each are such that the Gibbs free energy of the system reaches its minimum value. From a mathematical point of view, the determination of equilibrium phase assemblages can, in short, be defined as a constrained minimization problem. To solve the Gibbs free energy minimization problem a ‘Feasible Iterate Sequential Quadratic Programming’ method (FSQP) is employed. The system’s Gibbs free energy is minimized under several different linear and non-linear constraints. The algorithm, coded as a highly flexible FORTRAN computer program (named ‘Gib’), has been set up, at the moment, to perform equilibrium calculations in NaO-CaO-MgO-FeO-Al2O3-Cr2O3-Fe2O3- SiO2-TiO2 systems. However, the program is designed in a way that any other oxide component could be easily added.¶ To accurately forward model phase equilibria compositions using ‘Gib’, a precise estimation of the thermodynamic data for mineral end-members and of the solution parameters that will be adopted in the computation is needed. As a result, the value of these parameters had to be derived/refined for every solution phase in the investigated systems. A computer program (called ‘GibInv’) has been set up, and its implementation is here described in detail, that allows the simultaneous refinement of any of the end-member and mixing parameters. Derivation of internally consistent thermodynamic data is obtained by making use of the Bayesian technique. The program, after being successfully tested in a synthetic case, is initially applied to pyroxene assemblages in the system CaO-MgO-FeO-Al2O3-SiO2 (i.e. CMFAS) and in its constituent subsystems. Preliminary results are presented.¶ The new thermodynamic model is then applied to assemblages of Ca-Mg-Fe olivines and to assemblages of coexisting pyroxenes (orthopyroxene, low Ca- and high Ca clinopyroxene; two or three depending on T-P-bulk composition conditions), in CMFAS system and subsystems. Olivine and pyroxene solid solution and end-member parameters are refined, in part using ‘GibInv’ and in part on a ‘trial and error’ basis, and, when necessary, new parameters are derived. Olivine/pyroxene phase relations within such systems and their subsystems are calculated over a wide range of temperatures and pressures and compare very favorably with experimental constraints.
237

Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells

Labrune, Martin 20 May 2011 (has links) (PDF)
This thesis presents a work which has been devoted to the growth of silicon thin films on crystalline silicon for photovoltaic applications by means of RF PECVD. The primary goal of this work was to obtain an amorphous growth on any c-Si surface in order to provide an efficient passivation, as required in heterojunction solar cells. Indeed, we demonstrated that epitaxial or mixed phase growths, easy to obtain on (100) Si, would lead to poor surface passivation. We proved that growing a few nm thin a-Si1-xCx:H alloy film was an efficient, stable and reproducible way to hinder epitaxy while keeping an excellent surface passivation by the subsequent deposition of a-Si:H films. Process optimization mainly based on Spectroscopic Ellipsometry, Effective lifetime measurements (Sinton lifetime tester) and current-voltage characterization led us to demonstrate that it was possible to obtain a-Si:H/c-Si heterojunction solar cells with stable VOC of 710 mV and FF of 76 % on flat (n) c-Si wafers, with solar cells of 25 cm2 whose metallization was realized by screen-printing technology. This work has also demonstrated the viability of a completely dry process where the native oxide is removed by SiF4 plasma etching instead of the wet HF removal. Last but not least, the epitaxial growth of silicon thin films, undoped and n or p-type doped, on (100)-oriented surfaces has been studied by Spectroscopic Ellipsometry and Hall effect measurements. We have been able to fabricate homojunction solar cells with a p-type emitter as well as p-i-n structures with an undoped epitaxial absorber on a heavily-doped (p) c-Si wafers.
238

A Second Generation Ex-Vivo Accommodation Simulator: Design and Calibration

Nankivil, Derek 01 January 2008 (has links)
Presbyopia is the progressive decrease in accommodative ability with age, and it implies a major loss of visual function. Presbyopia is the only condition of the eye which affects everyone who lives beyond 50 years of age. As part of a joint effort, the Ophthalmic Biophysics Center at the Bascom Palmer Eye Institute and the Vision Cooperative Research Centre at the University of New South Wales, developed two different ex-vivo accommodation simulators (EVAS) to examine the mechanisms of accommodation and presbyopia, and to test and validate new ophthalmic surgical procedures such as lens refilling. The purpose of this thesis is to mechanically and optically calibrate the second generation instrument (EVASII), and to compare it to the first generation design (EVASI). To validate the optical measurements of EVASII, an optical calibration has been performed, yielding a lens power measurement system with a mean accuracy of ±0.56D. To enhance the optical capabilities and tissue dissection options, the mechanics of mounting the tissue has been improved by using magnetic mounts, and the mechanical calibration of EVASII, yielded a force measurement system with a mean uncertainty of ±0.81g Also, a comparison of EVASII and EVASI has been performed, showing that the results of the two systems are significantly different; however, both systems successfully simulate accommodation. Thus, general trends concerning efficacy and optimization of surgical procedures as well as age related accommodative changes can be compared for each individual system.
239

Dynamic Optical Model of the Primate Crystalline Lens and Implications for the Restoration of Accommodation

Borja, David 23 December 2008 (has links)
The human crystalline lens is a complex, inhomogeneous and dynamic optical element which enables the eye to adjust focus in a process known as accommodation. Age related changes in the optical and mechanical properties of the lens cause a loss in accommodative ability leading to a condition known as presbyopia. Several experimental surgical techniques are under development for the correction of presbyopia. The goal of this dissertation is to better understand the relationship between the crystalline lens shape, its non-uniform refractive index gradient and its optical power and their changes with age and accommodation. In this study direct lens power and shape measurements were acquired on isolated lenses, and on lenses mounted in a lens stretching system designed to simulate accommodation. Several lens shape and power measurement techniques were developed for this study including a Scheimpflug camera system optimized for imaging the crystalline lens. Direct measurements of lens shape and power were used to develop an age-dependent optical-mechanical model of the lens during accommodation. The study shows that the normal growth of the lens is a major contributor to the progressive loss of accommodation amplitude, independent of changes in the elastic properties of the lens. These findings suggest that accommodation can be restored by refilling the lens with a material having a uniform refractive index.
240

Epithelial-mesenchymal transition in the anterior segment of the eye

Chandler, Heather Lynn, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 138-153).

Page generated in 0.0702 seconds