• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 23
  • 10
  • 8
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 28
  • 23
  • 21
  • 19
  • 19
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Thermodynamic Parameters Relative to the Melting of Cellulose Tributyrate

Piana, Umberto, Pizzoli, Maria, Buchanan, Charles M. 01 January 1995 (has links)
Wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (d.s.c.) measurements were made on cellulose tributyrate (CTB). In one case, CTB precipitated from solution in powdered form was annealed at different temperatures. In a second case, CTB was isothermally crystallized either from the melt or from the glass. Samples annealed from the powder showed higher crystallinity with respect to samples crystallized from the glassy or molten state. By applying the Hoffman-Weeks method to the melting temperatures of isothermally crystallized samples, a value of 192 °C for the equilibrium melting temperature of CTB was obtained. From calorimetric results on samples with different crystalline/amorphous ratio, a linear dependence between ΔHm and ΔCp was found, whose extrapolation gave 34.5 J g-1 for the equilibrium heat of fusion ΔHm°. A correlation between the experimental melting enthalpy arising from d.s.c. measurements and the percentage crystallinity estimated by WAXS measurements was attempted. In this manner a second, surprisingly high, value (67 J g-1) for ΔHm° was found. The difference between the values obtained from the two methods is believed to be due to the presence of macroscopic order in the amorphous phase, which influences the value of the WAXS crystallinity.
22

Characterization andmodeling of amorphous andcrystalline ratios in poly-acrylates

Jonzon, Julia January 2020 (has links)
At Nouryon Stockvik the Expancel production site is located. Expandable microspheres areused in for many types of applications and is a technically challenging product. At ExpancelStockvik they are constantly striving to improve product properties in line with customerexpectations. To be able to do this, it is important to understand the properties of themicrospheres such as crystallinity and crystallite size.Films was prepared from microspheres dissolved in DMA and analyzed with High-resolutionSEM, Powder X-Ray Diffraction and Raman Spectroscopy. The aim was to develop a methodto investigate and determine crystalline ratios and crystallite size within the microsphere filmsand the microspheres before film preparation. The eventual correlation between morphologyand crystallinity was also studied. An attempt of finding an amorphous reference sample wasalso performed, this was done by grinding microspheres in liquid nitrogen, unfortunately, nosuccess was reached. Gauss-fitting was therefore performed to be able to find the amorphousregions of the XRD Diffractogram for the calculations of crystallinity and crystallite size. TheGauss-fitting was successfully performed with good R-square values.During the Raman analysis some fluorescence problems occurred, this problem will probablybe solved if a laser source with higher excitation frequency is used in future analysis. Evenwith fluorescence problems, Raman analysis could successfully be performed and giveinformation of the composition. The crystallite size was in general larger for the microspheresbefore they were prepared from dissolving them to make films. Generally, it seems as there isa correlation between the morphology, crystallinity, and crystallite size.
23

THICKNESS AND CRYSTALLINITY DEPENDENT SWELLING OF POLY (ETHYLENE OXIDE) /POLY (METHYL METHACRYLATE) BLEND FILMS

Wang, Shiping 02 July 2019 (has links)
No description available.
24

Modelling the mechanical and strain recovery behaviour of partially crystalline PLA

Sweeney, John, Spencer, Paul E., Nair, Karthik Jayan, Coates, Philip D. 13 August 2019 (has links)
Yes / This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress–strain, stress relaxation and strain recovery experiments at large strain at 60 C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress–strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery. / Funded by the Engineering and Physical Sciences Research Council, grant number EP/L020572/1
25

Strain-Induced Crystallization of Natural Rubber and Isoprene Rubber Studied by Solid-State NMR Spectroscopy

Hu, Jiahuan 16 May 2014 (has links)
No description available.
26

Modelling the Mechanical and Strain Recovery Behaviour of Partially Crystalline PLA

Sweeney, John, Spencer, Paul E., Karthik, N., Coates, Philip D. 30 January 2020 (has links)
Yes / This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress-strain, stress relaxation and strain recovery experiments at large strain at 60 °C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress-strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery. / Engineering and Physical Sciences Research Council, grant number EP/L020572/1. / . Not submitted within 3 months from acceptance or publication but is a Gold paper.
27

Characterization of C60 Nanoparticles in Aqueous Systems

Duncan, Laura Kristin 16 May 2007 (has links)
The discovery that negatively charged aggregates of C60 fullerene are stable in aqueous environments has elicited concerns regarding the potential environmental and health effects of these aggregates. Although many previous studies have used aggregates synthesized using intermediate organic solvents, this work primarily employed an aggregate production method that more closely emulates the fate of C60 upon accidental release into the environment — extended mixing in water. The aggregates formed via this method (aqu/nC60) differ from those produced using the more common solvent exchange methods. The aqu/nC60 aggregates are heterogeneous in size (20 nm and larger) and shape (angular to round), negatively charged, and crystalline in structure — exhibiting a face centered cubic (fcc) system. Solution characteristics such as aqu/nC60 aggregate size and concentration were found to be dependant upon preparation variables such as stirring time, initial C60 concentration, and initial particle size. Additional experiments indicate that aggregate charge, structure, and stability are highly dependant upon the identity of co-solutes (NaCl, CaCl2, sodium citrate) and their concentrations. Citrate concentrations greater than 0.5 mM resulted in the formation of very small (< 20 nm) spherical aqu/nC60 particles. At moderate citrate concentrations (~ 1 mM) a more negative surface charge was observed, which may be an indication of increased nC60 stability. In contrast, high concentrations of monovalent and divalent electrolytes result in aggregation and sedimentation of nC60 out of solution. Our research describes the effect that solution composition has on aggregate formation and stability, and suggests that C60 fate and transport will be a function of solution composition. / Master of Science
28

Amorphous solid dispersion effects on in vitro solution concentrations of quercetin

Gilley, Andrew 31 August 2016 (has links)
Quercetin is a flavonol with potential health benefits including activities against cardiovascular disease, obesity, and oxidative stress. However, the benefits of quercetin are likely limited by poor bioavailability, primarily attributed to its poor aqueous solubility (due to its hydrophobicity and crystallinity) and extensive phase-II metabolism. Improving the apparent solubility of quercetin has the potential to improve its in vivo bioavailability. Strategies to increase solution concentrations in the small intestinal lumen have the potential to substantially increase quercetin bioavailability, and efficacy. We aimed to achieve this by incorporating quercetin into amorphous solid dispersions (ASDs) with cellulose derivatives, eliminating crystallinity, and selectively releasing amorphous quercetin under simulated intestinal conditions (pH 6.8, 37C). Amorphous quercetin was dispersed in cellulose esters including 6-carboxycellulose acetate butyrate (CCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate suberate (CASub) to achieve stability and provide pH-triggered release. In addition, polyvinylpyrrolidone (PVP) containing CASub and CCAB blends were prepared to further promote enhanced dissolution. The ASD employing 10% quercetin in 20% PVP:70% CASub was most successful at enhancing the solution concentration of quercetin, providing an 18-fold increase in the area under the concentration/time curve (AUC) compared to quercetin alone. These results warrant in vivo assessment of quercetin-loaded ASDs formulated with CASub and its blend with PVP towards improving the bioavailability of quercetin. / Master of Science in Life Sciences
29

3D Structural Analysis of the Benton Uplift, Ouachita Orogen, Arkansas

Johnson, Harold Everett 2011 December 1900 (has links)
The date for the formation of the Benton Uplift, Ouachita orogeny, is bracketed by Carboniferous synorogenic sediments deposited to the north and Late Pennsylvanian to Early Permian isotopic dates from the weakly metamorphosed rocks within the uplift. We address the largely unknown structural history between these two constraints by presenting an improved 3-dimensional kinematic model using better constrained retrodeformable sections. These new sections are based on all surface and subsurface data, new zircon fission track dates and thermal maturation data including new ‘crystallinity’ data to constrain the maximum burial depth. Concordant zircon fission track ages range from 307 ± 18.8 Ma to 333.4 ± 38.9 Ma or from the Late Devonian to Early Permian. Maximum ‘crystallinity’ of both illite and chlorite indicate these exposed rocks experienced a temperature of ~300°C across the eastern Benton Uplift. This temperature is consistent with reconstructed burial depths using cumulative stratigraphic thickness without having to call on structural thickening. Comparing coarse and fine clay fractions, computed temperature for the fine clay fraction is less by ~100°C than that of the coarse clay fraction. This difference is the same for all formations studied. This uniform difference in temperature may indicate cooling of the orogen as it deformed or more than one thermal event.
30

Water vapour permeability of bio-based polymers

Duan, Zhouyang January 2013 (has links)
This project investigates the moisture barrier properties of bio-based polymers and ways of improving them. The first section addresses the effect of crystallinity on the water permeability of poly(lactic acid) (PLA). The second section investigates PLA/talc composites and PLA/ montmorillonite nanocomposites. The third section is focused on a new polymer, polybutylene succinate (PBS), and its nanocomposites with montmorillonite. In the first section, the water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial PLA were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0 to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry (DSC) and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38°C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0 to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the tortuous path model. The model was also successfully used to explain published data on water permeability of polyethylene terephthalate. In the second section, a series of PLA/talc composites and PLA/ montmorillonite nanocomposites were prepared by melt compounding followed by compression moulding. The morphologies of the composites were investigated using transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) and it was found that the fillers were well dispersed in the polymer matrix. The average aspect ratio of the compounded talc was found to be 8, and that of the nanoclay was found to be 50. Water vapour transmission rates (WVTR) through the films were measured at 38°C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased with increasing filler content and the results gave good agreement with predictions from the Nielsen tortuous path model. In the third section, PBS/ montmorillonite nanocomposites were prepared by melt compounding followed by compression moulding. The melting and crystallisation behaviour of the pure PBS samples were investigated using differential scanning calorimetry (DSC) and cross polarised optical microscopy. A slight decrease of the degree of crystallinity was found in PBS containing 5% nanoclay. The morphology of the composites was investigated using transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) and it was confirmed that that composite structures were intercalated. Water vapour transmission rates (WVTR) through the PBS sheets were measured using a MOCON Permatran-W®398. The measured values of WVTR decreased with increasing nanoclay content. However, the experimental values were all higher than the values predicted by the Nielsen tortuosity model. This result shows that in the case of PBS, which is a highly crystalline polymer, the nanoclay is not as well dispersed and is not as effective in reducing water vapour permeability as in the case of PLA.

Page generated in 0.0816 seconds