Spelling suggestions: "subject:"crystallization -- atherapeutic used"" "subject:"crystallization -- btherapeutic used""
1 |
Contribution à l'étude de la cristallisation, par refroidissement en cuve agitée, de substances d'intérêt pharmaceutique présentant un polymorphisme cristallinHerman, Christelle 29 January 2010 (has links)
Le travail présenté s'intéresse au développement d'une méthodologie d'étude et d'optimisation des opérations de cristallisation en solution, par refroidissement en cuve agitée, de substances d'intérêt pharmaceutique présentant un polymorphisme cristallin. L'opération de cristallisation de référence, servant de support dans le cadre de ce travail, est l'opération de cristallisation de purification de l'Étiracetam crude. Il s'agit du step 3 dans la chaîne de production du Lévétiracetam, principe actif du Keppra, médicament commercialisé par la Société UCB. L'opération de cristallisation de référence se découpe en deux étapes. La première d'entre elles, l'étape de refroidissement, se caractérise par l'apparition de cristaux, dits de morphe II. La deuxième étape, l'étape de maturation, se caractérise par la transition polymorphe, dans des conditions isothermes, des cristaux de morphe II en des cristaux, dits de morphe I, correspondant à la forme cristallographique d'intérêt pharmaceutique.<p><p>Cette étude est abordée via une approche multi-échelle et en suivant les lignes conductrices et méthodologies proposées par la Food and Drug Administration (FDA).<p><p>Ainsi, dans un premier temps, nous nous intéressons à la caractérisation des deux formes cristallographiques, de leur milieu environnant et des interactions entre eux. Nous déterminons ainsi que les cristaux des deux formes cristallographiques sont des composés racémiques. Nous mettons également en évidence la nature énantiotrope du système polymorphe et déterminons la température de transition solide-solide séparant le domaine de stabilité thermique des deux morphes. Enfin, les courbes de solubilité, tant thermodynamiques que métastables, de ces derniers, dans du méthanol, sont déterminées.<p><p>Toute cette étude se base sur l'analyse de résultats obtenus au moyen de nombreuses techniques analytiques et méthodes expérimentales de mesure aussi diversifiées les unes que les autres. Nous développons, par ailleurs, trois méthodes de caractérisation des substances cristallines, lesquelles permettent la détermination précise de l'enthalpie fusion via l'analyse des courbes DSC expérimentales, la détermination de la température de transition solide-solide via des essais de stabilité thermique des cristaux en suspension et enfin la détermination de la solubilité d'un morphe métastable via l'utilisation de la relation thermodynamique établie, sur base de la connaissance de la solubilité thermodynamique du morphe stable.<p><p>Dans un deuxième temps, l'objectif est de comprendre les phénomènes physico-chimiques sous-jacents à l'opération de cristallisation, tant lors de l'étape de refroidissement que lors de celle de maturation. Cette étude s'effectue via le couplage entre des études fondamentales, des méthodes expérimentales et un modèle mathématique. L'originalité des expériences réalisées se trouve dans l'utilisation simultanée de quatre sondes de mesure afin de suivre l'évolution temporelle de divers paramètres-clés de l'opération de cristallisation :la température, la concentration de la solution, la distribution granulométrique ainsi que la forme cristallographique des cristaux en suspension. Le modèle mathématique développé, traduisant le comportement de la suspension, lors de l'étape de maturation et, plus particulièrement, au cours de la transition polymorphe, repose sur le couplage entre des équations de bilan de population pour les deux morphes et un bilan de matière pour le soluté.<p><p>Cette étude nous permet essentiellement de proposer un mécanisme détaillé pour la transition polymorphe, laquelle, médiée par la solution, s'effectue par dissolution-recristallisation. Cette étude met, par ailleurs, en évidence l'importance considérable que joue la germination primaire sur la limitation des cinétiques des mécanismes sous-jacents à l'opération de cristallisation, que ce soit lors de l'étape de refroidissement au cours de laquelle apparaissent les premiers cristaux de morphe II, ou lors de l'étape de maturation au cours de laquelle se déroule la transition polymorphe entre les cristaux de morphe II, qui se dissolvent, en les cristaux de morphe I, qui croissent. Nous montrons également qu'une surface suffisante, dite critique, est nécessaire pour amorcer l'emballement des phénomènes.<p><p><p>Enfin, dans un troisième temps, nous nous focalisons sur l'étude de l'influence des paramètres opératoires sur les temps caractéristiques des phénomènes physico-chimiques, et dès lors sur les distributions granulométriques des cristaux produits, et ce, en vue d'optimiser l'opération de cristallisation. Cette optimisation sous-entend essentiellement la diminution de la durée de l'opération de cristallisation tout en contrôlant la distribution granulométrique des tailles des cristaux de morphe I récupérés à l'issue de l'opération de cristallisation. Cette étude s'effectue via la réalisation d'un nombre limité d'expériences, dont les points expérimentaux sont définis par un plan d'expériences.<p><p>Les résultats expérimentaux montrent, entre autres, qu'il existe de réelles compétitions, d'une part, entres les phénomènes physico-chimiques, la germination et la croissance, et d'autre part, entres les facteurs cinétiques et thermodynamiques. <p><p>Ce travail s'intéresse également à deux études annexes.<p><p>L'objectif de la première d'entre elles est de caractériser l'écoulement et le mélange générés par les trois systèmes d'agitation au sein desquels se déroule l'opération de cristallisation. Ceci s'effectue en comparant et discutant des résultats obtenus via deux approches complémentaires :des essais expérimentaux et des simulations numériques de mécanique des fluides. Ces résultats montrent que tant l'écoulement que les mécanismes de mélange qu'il conditionne sont très similaires d'un système d'agitation à l'autre. Par ailleurs, nous mettons en évidence, expérimentalement, que l'opération de cristallisation est peu dépendante des trois systèmes d'agitation utilisés, et, en particulier, de l'intensité de l'agitation.<p><p>La deuxième étude se focalise sur le développement d'une méthode expérimentale originale permettant le suivi en-ligne de l'évolution temporelle, au cours d'opérations du Génie des Procédés, de la viscosité apparente des suspensions, telle qu'elle est définie par Metzner et Otto. L'idée est utiliser, comme lien univoque entre la puissance dissipée mesurée et la viscosité apparente, la relation Np-Re-Fr du système d'agitation utilisé. Cette méthode, appliquée à l'opération de cristallisation de référence, met en évidence l'intérêt du suivi en-ligne de la viscosité apparente de la suspension comme outil de contrôle.<p><p>**************************************************<p><p>The work presented concerns a methodological development and optimization of batch cooling crystallizations in solution of pharmaceutical active ingredients showing a polymorphic behavior. The crystallization process that served as a reference in the context of our work, is the crystallization performed for the purification of crude Etiracetam. This crystallization is performed as a third step in the Leviteracetam production process. The latter is the active compound of Keppra, a drug developed and commercialized by UCB.<p>The reference crystallization can be divided in two distinct steps. At first, a solution of solvent and compound is cooled until a maturation temperature is reached. This step is characterized by the appearance of morphe II crystals. In turn, the second step, the maturation, is characterized by a polymorphic transition under isothermal conditions, with morph II crystals transforming into morph I crystals, morphe I being the compound of pharmaceutical interest.<p><p>The study presented is performed using a multi-level approach and following the guidelines and methods as suggested by the Food and Drug Administration (FDA).<p><p>Firstly, we start by characterizing the two crystallographic forms, their environment, as well as their interactions. The results show that both crystallographic forms are racemic compounds that are enantiotropically related. The solid-solid transition temperature, separating the stability range of the two forms, is determined using various techniques. Finally, we describe both the thermodynamic, as well as meta-stable, solubility curves of both forms in methanol.<p><p>A wide range of known analytical techniques and experimental methods has been used to perform the study presented here. We have furthermore developed three characterization methods for crystalline substances, that allow for a precise determination of the fusion enthalpy through analysis of experimental DSC curves, for a determination of the solid-solid transition temperature through thermal stability testing of different crystal suspensions, and finally for the determination of the solubility of the meta-stable morph through a thermodynamic relation, linking this solubility to that of the stable morph.<p><p>In a second step, the objective was to understand the physico-chemical phenomena underlying the crystallization, both during cooling, as well as the final maturation. This goal is achieved by coupling fundamental studies, experimental work, and a mathematical model. The originality of the presented work is underlined by a simultaneous use of four online probes, allowing an instantaneous follow-up of the key parameters influencing the crystallization process: temperature, solution concentration, particle size distribution, as well as crystallographic form. The mathematical model developed is based on the coupling of population equations for both morphs with the mass balance equations. The final model translates the behavior of the suspension during the maturation step, and more particularly during the polymorphic transition. <p><p>A detailed mechanism is presented, explaining the solution mediated polymorphic transformation, occurring through a dissolution-recrystallization process. The importance of the primary nucleation, and more specifically the limitation of the crystallization kinetics due to this nucleation, is highlighted. Both the appearance of morph II crystals during the cooling profile, as well as the polymorphic transformation during the maturation are limited by nucleation. We show that a critical, minimal surface is required for an observable acceleration of the underlying processes to occur.<p><p>Finally, a third part of the study focuses on the study of the influence of operating parameters on the time needed for the different physico-chemical phenomena to occur, and hence on the particle size distribution of the obtained end product, with the ultimate goal of optimizing these operating conditions. The optimization mainly concerns the reduction of the total operating time, while keeping the particle size distribution of morph I crystals under control. This part of the study is performed through a limited number of experiments that are chosen using a well-defined experimental design.<p><p>The experimental results show the competition between the physico-chemical nucleation and growth phenomena, as well as between kinetic and thermodynamic factors.<p><p>In this work, we also discuss two annex studies. <p><p>The goal of the first of these studies is to characterize the flow and the mixture created using three different stirring systems for the crystallization. We achieve this goal by comparing and discussing results from two complementary sources: experimental trials and numerical fluid mechanics simulations. These results show both the flow and mixture mechanisms to be comparable for the different stirring types studied. We, furthermore, confirm through experimental results that the crystallization process shows almost no dependence on the stirring device used, or on the stirring intensity.<p><p>The second annex study focalizes on the development of an original experimental design allowing an online follow-up of the apparent viscosity of a suspension, as defined by Metzner and Otto. Central in the idea developed, is the use of the Np-Re-Fr relation as unique link between the dissipated power and the apparent viscosity. Applied to the reference crystallization, this method highlights the significance of an online follow-up of the suspension viscosity to control the crystallization.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
Page generated in 0.5015 seconds