• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1096
  • 218
  • 218
  • 109
  • 37
  • 37
  • 37
  • 37
  • 37
  • 36
  • 19
  • 16
  • 15
  • 12
  • 10
  • Tagged with
  • 2206
  • 720
  • 269
  • 221
  • 217
  • 202
  • 182
  • 170
  • 165
  • 144
  • 142
  • 136
  • 126
  • 119
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Macroscopic dislocation modelling

Tighe, Stephen Patrick January 1992 (has links)
Work-hardened metals typically possess large numbers of dislocations in complex three-dimensional configurations about which little is known theoretically. Here these large numbers of dislocations are accounted for by means of a dislocation density tensor, which is obtained by applying an averaging process to families of discrete dislocations. Some simple continuous distributions are examined and an analogy is drawn with solenoids in electromagnetism before the question of the equilibrium of dislocation configurations is studied. It is then proved that the only finite, simply-connected distribution of dislocations in equilibrium in the absence of applied stresses are ones in which all components of stress vanish everywhere. Some examples of these zero stress everywhere (ZSE) distributions are then given, and the concept of 'plastic distortion' is used to facilitate their interpretation as rotations of the crystal lattice. Plastic distortion can also be understood as a distribution of infinitesimal dislocation loops ('Kroupa loops'), and this idea is used in Chapter 4 to investigate the dislocation distributions which correspond to elastic inclusions. The evolution, under an applied stress, of some simple ZSEs is analysed, and the idea of 'polarisation' is introduced, again in analogy with electromagnetism. Finally, a mechanism is conjectured for the onset of plastic flow.
442

Novel materials based on functionalised silsesquioxanes

Hardy, Julie January 2001 (has links)
The functionalisation of silsesquioxanes results in materials with novel physical properties. A series of compounds has been coupled with silsesquioxanes [HSiO<sub>3/2</sub>]<sub>8</sub> and [SiO<sub>3/2</sub>]<sub>8</sub> [OSi(CH<sub>3</sub>)<sub>2</sub>H]<sub>8</sub> and the properties of the products investigated. Typically, coupling reactions involved hydrosilylation with H<sub>2</sub>PtCl<sub>6</sub> or [Pt{(η-ViMe<sub>2</sub>Si)<sub>2</sub>O}(P<sup>t</sup>Bu<sub>3</sub>)]. Mesogenic compounds have been shown to undergo a change in the liquid crystalline phase produced, once attached to the silsesquioxane core. A more ordered phase was observed due to the tethering of the mesogen to the cage. The silsesquioxanes core was considered to have been deformed in the production of this phase. Silsesquioxanes capable of complexing metal atoms have also been studied. Polyether derivatised cages were prepared and preliminary studies indicate potential for potassium complexation. Vinyl functionalised silsesquioxanes have also been shown to complex platinum, in an exchange reaction with [Pt{(η-ViMe<sub>2</sub>Si)<sub>2</sub>O}(P<sup>t</sup>Bu<sub>3</sub>)]. Investigations into the hydrosilylation reaction have involved coupling triethylsilane, triethoxysilane and the silsesquioxanes with a variety of vinyl, allyl and alkenic compounds. The proportions of α and β adducts were considered. Particular substituents were found to encourage α addition, with species having an oxygen or phenyl group at the allylic position producing the α-regioisomer as well as the typical β product. It is suggested that such substitution affects the mode of cis ligand insertion in the Chalk Harrod mechanism. A preference for the α-regioisomer was also observed for the hydrosilylations of vinyl silsesquioxane compounds.
443

Nuclear magnetic resonance relaxation in N-(p-methoxy-benzylidene)-p-butylaniline -carbon-tetrachloride mixtures

Heldman, Margaret Anne. January 1979 (has links)
No description available.
444

Molecular dynamics study of liquid crystals by 2H and 14N NMR spectroscopy

Chen, Yanbin 28 March 2006 (has links)
Deuterium (2H) and Nitrogen 14 (14N) NMR spectroscopy were used to investigate the molecular dynamics in one thermotropic and one lyotropic liquid crystal. Quantitative analyses of deuterium spectral densities of motion for three deuteron sites (ring and C[alpha]) at two different Larmor frequencies (46 and 61.4MHz) are reported in the smectic A and C* phases of (S)-[4-(2-methylbutyl)phenyl]-4’-octylbiphenyl carboxylate (8BEF5-d15), a partially deuterated smectogen. 2H spectral densities for two deuteron sites on the chain (C1 and C2/C3) at Larmor frequency 61.4MHz and 14N spectral densities for the head group (NH4+) of the molecule decylammonium chloride (DACl) at 28.9MHz are reported in the lamellar phase of a partially deuterated sample, DACl-d11/H2O binary system. The motional model is the small step rotational diffusion for reorientations plus internal rotations in the strong collision limit. In the chiral C* phase of the first molecule, 8BEF5-d15, the helical axes are aligned along the external magnetic field and the deuteron spins appear to relax in a macroscopically uniaxial environment. After including the molecular tilt, the reorientation processes in the SmC* phase are found to have higher activation energies than those in the smectic A phase. Applying the same motional models to the lyotropic molecule DACl-d11, the tumbling motion of the long axis of the molecule in the aggregates is more rigorous in comparison to the molecular spinning motion. The similarity of deuterium spectral densities from the C1 and C2/C3 sites may indicate a relatively rigid unit of C1-C2-C3-C4 in the backbone.
445

Liquid crystallinity of a semiflexible polymer : acetoxypropyl cellulose

Laivins, Gunar V. January 1984 (has links)
A thermotropic cholesteric polymer, (acetoxypropyl)cellulose (APC) is synthesized by reacting (hydroxypropyl)cellulose and acetic anhydride. The molar etherification and esterification values, determined by chromic acid oxidation and saponification are 3.1 (+OR-) 0.3 and 1.9 (+OR-) 0.1, respectively. Fractions ranging in molar mass from 2.2 x 10('4) to 6.5 x 10('5) g mol('-1), and of the same chemical composition, are obtained by addition of n-heptane to a dilute alcoholic solution. / The phase separation behaviour of APC in dibutyl phthalate (DBP) is adequately explained by the modified lattice theories for freely-jointed chains, even when orientational interactions are neglected. The volume fraction of APC needed for anisotropic phase separation is 0.52 (+OR-) 0.02 in DBP at 25(DEGREES)C, while the isotropic phase is stable below a polymer volume fraction of 0.69 (+OR-) 0.04. Between these concentrations, the ordered phase coexists with a more dilute isotropic phase. The concentration of both phases increases with that of the solution. The molar mass of APC in the mesophase exceeds that in the isotropic phase. The critical concentration determined by optical microscopy and differential scanning calorimetry increases markedly with temperature from 25(DEGREES) to 150(DEGREES)C. This increase is attributed to a decrease in the stiffness of the chain; the axial ratio of the Kuhn segment decreases from 10.8 (+OR-) 0.8 to 5.6 (+OR-) 0.4 over the same temperature range. The axial ratio of the Kuhn segment is calculated from the limiting viscosity numbers of the APC fractions in dimethyl phthalate. / Variations in cholesteric pitch of APC with temperature and with diluent concentration are determined from the spectrophotometrically measured changes in the wavelength of light reflected by thin layers of the mesophase. The pitch increases with both DBP content and temperature for all the samples. As predicted by Kimura (1982), the temperature dependence of the pitch decreases with increasing DBP concentration. Quantitative agreement with Kimura's theory requires the use of physically reasonable dimensions for the optically active APC chain. / Analysis of the refractometric data indicate that shearing of the cholesteric mesophase transforms it into a nematic-like arrangement. The birefringence of the undiluted nematic APC is 0.013 at 26(DEGREES)C, from which a nematic layer order parameter of 0.73 (+OR-) 0.3 is calculated. The order parameter appears to be concentration independent.
446

Ice nuclei and convective storms.

Isaac, George A. January 1972 (has links)
No description available.
447

Discotic Liquid Crystals and Polymersomes: Molecule Goniometers

Chang, Ya-Wen 2012 August 1900 (has links)
Controlling the assembly of amphiphilic molecules and micron-sized, disk-shaped particles at different length scales into ordered structures enables bottom-up organization which is of great interest to emerging technologies based on structured materials. The primary object of this work is the investigation of structure forming components - Zirconium phosphate (ZrP) discotic particles and polymersomes/ amphiphiles on their self-assembly and interactions. The effect of bilayer architecture of polymersomes on surface reactivity was investigated via fluorescent probing method. Established through complementary experiments, correlation between reactivity and molecule diffusivity in polymer-rich environment revealed the mechanism of reduced reactivity when tethered reactive groups are located deeper within the hydrophilic polymer layer. The phase diagram of charged nanoplatelets was constructed as a function of particle concentration, surface cation moiety, and ionic strength. Influence of surface cation on the isotropic-nematic transition was done by measuring the transition boundaries of discotic suspensions prepared by acid-base exfoliation reaction with a series of exfoliating agents. Furthermore, a novel phase transition was found, where platelet-platelet interaction was influenced synergistically by ionic strength and ion exchange. At low pH, directional inter-platelet attractions lead to the formation of low volume fraction colloidal gels. Alternative surface modification approaches, including biomolecule deposition and alkyl chain grafting were explored. Finally, self-assembly of platelets in emulsions and oil-water interface was examined. Surface modification was applied to link surface properties to stable emulsion-forming ability in mixed surfactant-particle system. Emulsion uniformity was achieved by microfluidic flow focusing method. Surface engineering and interaction control was demonstrated throughout this work to be viable approaches to the fundamental understanding of collective behaviors of individual building blocks.
448

Cryostability of large unilamellar vesicles in relation to the effect of cryoprotective agents on ice matrix

Siow, Lee Fong, n/a January 2008 (has links)
Freeze-injury at the plasma membrane level has been identified as being crucial for the survival of living matter. Since plasma membranes consist of several micro domains that make the structure rather complex, this study attempted to use simple model membranes to investigate the changes of phospholipid bilayers at sub-zero temperatures. Egg yolk L-α-phosphatidylcholine (EPC) and 1, 2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC) that mimic plasma membranes in their unique ways were used to prepare large unilamellar vesicles (LUV), which were the model membranes of this study. At cooling rates of 0.5 and 10�C/min, LUV were freeze-concentrated in the unfrozen matrix as a result of the advancing extraliposomal ice front and the decreasing phase volume of the unfrozen matrix, both of which led to membrane lesion. At the slow cooling rate of 0.5�C/min, an additional freezing stress imposed by the osmotic gradient across the bilayers, due to the increase of solute concentration in the unfrozen matrix, promoted leakage of LUV. The gel-liquid crystal phase transition temperature of phospholipids played an important role in determining if the LUV could withstand freezing stress when the LUV were held at a defined sub-zero temperature for a given period of holding time. EPC LUV were more leaky than DPPC LUV when they were held at the high sub-zero temperatures and their leakage increased with increasing holding time. The leakiness of EPC LUV could be related to the fluid and deformable nature of the EPC above its phase transition temperature. In contrast, DPPC LUV with a higher gel-liquid crystal phase transition temperature compared to EPC may become increasingly fragile at lower sub-zero temperatures, which led to the increase of leakage when the DPPC LUV were held at the lower sub-zero temperatures. These results indicated that the determination of the fatty acid profile of the plasma membranes was essential to aid in developing the most suitable holding temperature and time during the cryopreservation of biological specimens. Adding to the integrity of LUV that depended on the gel-liquid crystal phase transition temperature of phospholipids, intraliposomal ice formation also depended on the phase transition temperature of phospholipids. Intraliposomal ice formation was only observed for DPPC LUV but not for EPC LUV. In addition to the extraliposomal ice formation, other physical changes such as the eutectic crystallization of sodium chloride (NaCl) and ice mixture on the stability of LUV were also investigated. The eutectic crystallization of NaCl/ice mixture was governed by the intra- and extraliposomal distribution of NaCl and was more likely to occur at the physiological NaCl concentrations compared to lower NaCl concentrations. The eutectic crystallization of NaCl/ice mixture further increased the leakage of LUV. The understanding of the freezing behaviour and the mechanisms of freeze-injury of LUV allowed the use of the current model membranes for further investigations of the cryoprotective actions of cryoprotective agents (CPA). Partial phase diagrams of sugar-salt-water, dimethyl sulfoxide (DMSO)-salt-water and ethylene glycol (EG)-salt-water systems that resembled extraliposomal solute compositions were constructed and the phase volume of ice and unfrozen matrix was estimated from the freezing curves. Ice reduction was the major mechanism by which the non-permeable and permeable CPA protected the LUV from freeze-injury. Other cryoprotective mechanisms of the non-permeable and permeable CPA through the dilution and spacing out of the LUV in the unfrozen matrix as well as the suppression of the eutectic crystallization of NaCl/ice mixture were not ruled out. Non-permeable CPA were more effective in preventing leakage of DPPC than EPC LUV. Unlike the non-permeable CPA, permeable CPA were more effective for EPC than DPPC LUV that had been subjected to freezing and thawing processes. At room temperature, however, DMSO and EG were detrimental to the stability of DPPC LUV. The choice of CPA is strictly dependent on the type of phospholipids that varied in their acyl chain length and phase transition temperature. In summary, this study provides insights of the freeze-injury of LUV and the cryoprotective mechanisms of the non-permeable and permeable CPA which are beneficial to the field of cryopreservation that often depends on empirical trial and error methods. By integrating a comprehensive molecular-based understanding, an optimal cryopreservation procedure could be designed.
449

Structural effects on perylene bis(dicarboximide) organization in aqueous and solid phase

Helbley, Jennifer A. January 2006 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2006. / "August of 2006." Includes bibliographical references. Online version available on the World Wide Web.
450

Thermal and quantum analysis of a stored state in a photonic crystal CROW structure

Oliveira, Eduardo M. A. January 2007 (has links)
Thesis (M.S.) -- Worcester Polytechnic Institute. / Keywords: CROW; PBG; PhC; coupled resonator optical waveguide; metamaterials; photonic crystal; Bloch wave; photonic band gap;dynamic waveguide; Brillouin zone; thermal spreading. Includes bibliographical references (p. 84-87).

Page generated in 0.0507 seconds