• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modulation of Adenovirus E1A Activities by the Cellular Corepressor CtBP

Johansson, Cecilia January 2006 (has links)
Adenovirus E1A is needed to activate early viral genes and induce cell cycle progression to optimise the conditions for viral replication. This is mostly achieved through interactions between the first exon of E1A and cellular transcriptional regulatory proteins. The carboxy terminus of E1A binds the cellular corepressor of transcription C-terminal Binding Protein (CtBP), resulting in derepression of CtBP target genes. Inducible stable U2OS cell lines were established, expressing wild type E1A (E1Awt) and a mutant unable to bind CtBP (E1A∆CID). Low inducible levels and loss of protein expression after prolonged induction together with induction of apoptosis were consistent with the fact that wild type E1A is a cytotoxic protein and correlated with the ability of CtBP to repress proapoptotic genes. E1A∆CID did not induce apoptosis and could be expressed at high levels for prolonged time periods. Moreover, the binding of CtBP contributed to E1A-induced activation of viral E1B and E4 genes, through possible targeting of Sp1 and ATF transcription factors. In a micorarray study on mRNA levels in E1A-expressing cells, several genes consistent with the tumour suppressive and apoptotic properties of E1Awt were identified as differentially expressed. Furthermore, the differences between the two cell lines correlated with the presence of binding sites for CtBP-interacting transcription factors in the promoters of regulated genes, enabling the possible identification of new CtBP target genes. Finally, a molecular characterisation of the CtBP mechanism of repression revealed that positioning proximal to the basal promoter element was required for efficient repression, suggesting that CtBP interferes with the basal transcriptional machinery. Two separate domains were identified in CtBP, conferring transcriptional repression and activation when expressed alone, achieved through their interaction with HDACs and HATs, respectively. However, together they cooperate to ensure maximal repression through recruitment of histone deacetylase and inhibition of histone acetyl transferase activity. Together, these data shows important modulation of E1A activities by the binding of CtBP and suggests the involvement of acetylation/deacetylation complexes for the regulation of E1A function.
12

CtBPs and IRF3 at the Intersection of Transcriptional Regulation by Macromolecular Complexes

Jecrois, Anne M. 13 May 2021 (has links)
Transcriptional deregulation has emerged as one of the leading causes in various human diseases. More than fifty percent of cancers arise due to frequent mutations in genes regulating transcription. Higher-order assembly via protein-protein interactions is one common mechanism of transcriptional regulation. Despite their critical role in regulating gene transcription and therapeutic relevance, detailed mechanistic understanding of these assemblies remains scarce. The primary focus of this thesis is to uncover important structural principles underlying the assembly and stability of multi-domain protein assemblies by characterizing components of the IFNβ enhanceosome and the CtBP-mediated repression complex. Using a combination of biochemical and structural analyses, I showed that the transcriptional activator C-terminal binding protein 2 (CtBP2) is a tetramer by solving the 3.6Å cryoEM structure of CtBP2. I highlighted the types of interactions that stabilize the homo-tetramer and showed the relevance of the tetramer in CtBP2 transcriptional activity. Second, I used an integrative approach to investigate the structural features leading to activation of interferon regulator factor 3 (IRF3) and its interaction with DNA. Although this work mostly focused on components of the CtBP2-mediated complex and IFNβ enhanceosome, the principles described here can be applied to other complexes. Therefore, these studies provide an overall understanding on how other macromolecular complexes regulate gene transcription. Furthermore, our structural-based analyses will provide a basis for designing drugs that can regulate gene transcription in cancer and immunological disorders.
13

Etude structurale de biomarqueurs de neuropathologies : Cas particulier de la protéine CRYM, une Cytosolic-3,3',5-triiodo-L-thyronine(T3)-Binding Protein

Hachi, Isma 29 September 2010 (has links) (PDF)
Mon projet de thèse s'inscrit dans un vaste projet de caractérisation de protéines nouvellement identifiées dont l'expression est sélective à certaines régions du cerveau. Cette expression sélective pouvant être liée aux phénomènes de dégénérescence neuronale qui caractérisent les maladies neurodégénératives, ces protéines constituent donc des biomarqueurs potentiels. Une étude structurale et physico-chimique a été effectuée sur une dizaine de protéines, dont la protéine CRYM murine (mCRYM) qui fait parti de la famille des Cytosolic- 3,3',5-triiodo-L-thyronine(T3)-Binding Protein car elle régule la concentration en hormone thyroïdienne T3 libre dans la cellule. mCRYM appartient également à la famille des µ-crystallines et à la superfamille des µ-crystallines/Ornithines Cyclodésaminases. Les protéines présentant des homologies pour ces trois familles sont la plupart différentes par leur fonction (enzymatique ou structurale), leur localisation tissulaire et leurs caractéristiques physico-chimiques. Cette diversité est due au recrutement de gènes de la superfamille des crystallines pour diverses fonctions métaboliques tout en conservant le taxon spécifique des crystallines. Je suis parvenue à résoudre sa structure cristallographique complexée au NADP(H) et à l'hormone thyroïdienne T3 à une résolution de 1,75 Å. La protéine mCRYM est un exemple intéressant d'évolution par son appartenance à différentes familles de protéines et, à ce jour, aucune activité enzymatique n'a été identifiée. Sa caractérisation structurale et thermodynamique a donc permis de mettre en évidence les différences et les similitudes avec ses homologues enzymatiques et d'émettre des hypothèses quant à son évolution moléculaire. Ces résultats soulèvent de nouvelles questions concernant son rôle physiologique : mCRYM est-elle une enzyme ou une protéine structurale ? Comment intervient le couple redox NADPH/NADP+ pour réguler l'action génomique et/ou non génomique de l'hormone T3 ? L'hormone T3 est-il le seul ligand physiologique de CRYM dans le cerveau ?

Page generated in 0.0141 seconds