• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la morphogénèse et de la division chez Streptococcus pneumoniae / Division and morphogenesis in Streptococcus pneumoniae

Jacq, Maxime 18 April 2016 (has links)
La division bactérienne résulte de la constriction de la membrane, menée par la protéine du cytosquelette FtsZ, et de l’expansion et du remodelage de la paroi, réalisés par des synthétases et des hydrolases de la paroi. La coordination de ces processus au sein d’un macrocomplexe protéique, le divisome, est nécessaire au maintien de la forme et de l’intégrité bactérienne. J’ai étudié deux aspects importants de ce mécanisme de coordination chez le pathogène humain Streptococcus pneumoniae. J’ai déterminé in vivo la nanostructure de la protéine FtsZ en développant l’utilisation du PALM (PhotoActivated Localization Microscopy)chez le pneumocoque. Cette technique, basée sur la détection de molécules uniques et permettant une résolution de 20-40 nm, a révélé des aspects inattendus (dimensions, amas, sous-structures) de l’architecture de l’anneau de FtsZ au cours du cycle cellulaire. En parallèle, j’ai étudié le rôle de l’hydrolase Pmp23 par génétique, biochimie et microscopie à fluorescence. Mon travail a montré que Pmp23 est requise pour la stabilité des macrostructures du divisome du pneumocoque, révélant une nouvelle connexion entre le métabolisme de la paroi et la division cellulaire. / Bacterial division results from the combination of membrane constriction, driven by the cytoskeletal protein FtsZ, with cell wall expansion and remodeling, performed by cell wall synthases and hydrolases. Coordination of these processes within a large protein complex known as the divisome ensures cell integrity and maintenance of cell shape. I have investigated two important aspects of this coordination mechanism in the human pathogen Streptococcus pneumoniae. I determined the in vivo nanostructure of the divisome scaffolding protein FtsZ by developing the use of PhotoActivated Localization Microscopy (PALM) in the pneumococcus. PALM, which is based on the detection of single fluorescent labels and allows 20-40 nm resolution, has revealed unexpected features (dimensions, clusters, new substructures) of the FtsZ-ring architecture along the cell cycle. In parallel, I studied the role of the cell wall hydrolase Pmp23 using genetics, biochemistry and fluorescence microscopy. My work has shown that Pmp23 is required for the stability of divisome macrostructures in the pneumococcal cell, revealing a new connection between cell wall metabolism and cell division.
2

Etudes structurales et dynamiques du système de transport bactérien FhaB/FhaC et du complexe de réplication des Rhabdoviridae / Structure and dynamics of the bacterial transport systen FhaC/FhaB of Bordetella pertussis and of the replication complex of Rhabdoviridae

Martinez, Nicolas 15 March 2012 (has links)
L'objectif de la thèse était d'étudier les propriétés structurales et dynamiques de deux systèmes biologiques, avec une approche centrée sur les techniques de diffusion de neutrons. Les premier système biologique porte sur le système de transport FHA/FhaC de la bactérie à Gramm négatif Bordetella pertussis. C'est un modèle pour le système de transport bactérien à deux partenaires (TPS), qui est largement utilisé par de nombreuses bactéries à Gramm negatif, essentiellement pour excréter des facteurs de virulence. Cette thèse comporte une analyse structurale sur le complexe chaperonneprotéine client Fha30/Par27 mais aussi une étude sur les propriétés mécaniques de Fha30, qui possède une structure particulière en hélice beta. Le deuxième système porte sur le complexe de réplication des virus de la famille des Rhabdoviridae. Outre son importance en termes de santé humaine, le complexe de réplication comporte des protéines aux propriétés qui, sur le plan structural, sont très intéréssantes, comme par exemple la phosphoprotéine qui comporte des parties structurées reliées par des parties dépourvues de structure. On trouvera dans cette thèse une étude des propriétés dynamiques des différents domaines de la phosphoprotéine, mais aussi une étude structurale sur le complexe que celle-ci forme avec la nucleoprotéine. / The main goal of this thesis is to study the dynamical and structural properties of two biological systems, with an aproach centered on neutron scaterring techniques. The first system consists of the transport system FhaB/FhaC from Gramm negative bacteria Bordetella pertussis. It is a model system for the so called Two Partner Secretion (TPS) system, wich is widespread among Gramm negative bacteria to export virulence factors to the medium. This thesis emphasizes on the complexe Fha30, a N-terminal fragment of FHA, forms with the periplasmic chaperonne Par27, and on the mechanical properties of FHA, which has an uncanny beta helix structure. The other system is the replication complex of the Rhabdoviridae virus family. Apart from it's importance in humant health issues, the replication complex is composed of proteins with interesting structural and dynamical properties, specially the phosphoprotein which is composed of structured parts linked by flexible linkers. This thesis emphasizes on the dynamical properties of different fragments of the phosphoprotein, but also on the structural aspects of the complex the latter forms with the nucleoprotein. . Le deuxième système porte sur le complexe de réplication des virus de la famille des Rhabdoviridae. Outre son importance en termes de santé humaine, le complexe de réplication comporte des protéines aux propriétés qui, sur le plan structural, sont très intéréssantes, comme par exemple la phosphoprotéine qui comporte des parties structurées reliées par des parties dépourvues de structure. On trouvera dans cette thèse une étude des propriétés dynamiques des différents domaines de la phosphoprotéine, mais aussi une étude structurale sur le complexe que celle-ci forme avec la nucleoprotéine.
3

Études structurales et fonctionnelles des acteurs de la dégradation de la coiffe des ARNm chez la levure Saccharomyces cerevisiae. / Structural and functionnal studies of the actors of mRNAs decapping in yeast Saccharomyces cerevisiae.

Charenton, Clément 20 September 2016 (has links)
La régulation fine des mécanismes d’élimination des ARN messagers (ARNm) au sein des cellules contribue au contrôle de l’expression génétique ainsi qu’à l’adaptation rapide des niveaux de transcrits en réponse à divers événements cellulaires ou stimuli externes. Elle intervient ainsi dans différents aspects de la physiologie cellulaire : différentiation, prolifération, homéostasie, inflammation ou encore défense anti-parasitaire. Les ARNm eucaryotes matures sont protégés d’une dégradation incontrôlée par une coiffe et une queue poly(A), à chacune de leurs extrémités. Le premier événement amorçant la dégradation des ARNm est le raccourcissement de la queue poly(A) par le complexe CCR4/Not par un processus appelé déadénylation. Ensuite, la coiffe 5’ est éliminée pendant l’étape de « decapping » qui est considérée comme une étape cruciale, irréversible et extrêmement contrôlée, nécessaire à la dégradation rapide du corps du messager par Xrn1. L’étape de “decapping” est effectuée via le recrutement d’un complexe protéique formé de l’enzyme Dcp2 et de son co-activateur essentiel Dcp1. Cependant, ce complexe n’est que peu actif et nécessite de nombreux co-facteurs pour être pleinement efficace. Ces facteurs comprennent l’anneau LSm1-7 qui reconnaît l’extrémité 3’ des ARNm déadénylés et interagit avec Pat1, une protéine plateforme qui recrute l’hélicase Dhh1 et les protéines activatrices du decapping Edc1-2-3. Tous ces facteurs sont organisés au sein d’un réseau d’interaction complexe et dynamique qui, dans certaines conditions, colocalise dans les P-bodies, des foyers cytoplasmiques impliqués dans la dégradation des ARNm et dans la répression de la traduction.Même si de nombreuses études ont révélé l’importance des interactions protéine/protéine dans le processus de decapping, peu d’informations sont disponibles sur les mécanismes moléculaires du recrutement et d’activation de Dcp2 par ses différents co-facteurs. De même, en raison de l’absence de structure de Dcp2 en complexe avec un ARNm coiffé, les détails moléculaires de la reconnaissance et du clivage de la coiffe sont inconnus. Mon projet de thèse a pour but de répondre à ces questions par l’étude fonctionnelle et structurale des acteurs du decapping, en utilisant les protéines de la levure Saccharomyces cerevisiae comme système modèle, puisque la plupart des acteurs du decapping sont conservés au sein des eucaryotes. Dans ce but, j’ai exprimé par génie génétique et isolé la majorité des facteurs impliqués dans le “decapping” et reconstitué plusieurs sous complexes comprenant Dcp2 et ses différents cofacteurs. / MRNA decay is a highly regulated process allowing cells to rapidly adapt their abundance of transcripts to environmental conditions. Eukaryotic mRNAs are protected from uncontrolled decay by a cap structure (m7GpppX) and a poly(A) tail at their 5’ and 3’ ends, respectively. The first event initiating the 5’ to 3’ degradation pathway is the shortening of the poly(A) tail by the CCR4/Not complex through a process known as deadenylation. Then the 5’ cap is degraded during the decapping step, which is considered as a crucial and irreversible step before rapid degradation of RNAs. Decapping is accomplished by the recruitment of a protein complex formed by the Dcp2 catalytic subunit and its activator Dcp1. However, this complex has a low intrinsic decapping activity and requires several accessory factors to be fully efficient. These include the Lsm1-Lsm7 complex that binds to the 3’ end of deadenylated mRNAs and promotes decapping. This complex binds to Pat1, a scaffolding protein recruiting other accessory proteins such as Dhh1 and Edc1-3 proteins (Enhancer of Decapping), which favor decapping. After efficient removal of the cap, Xrn1 (the major cytoplasmic 5’-3’ exonuclease) is recruited and degrades the resulting uncapped RNAs. Interestingly, all these proteins are part of dynamic and multifunctional protein assemblies that, under conditions, localize into cytoplasmic foci known as P-bodies.Although many studies have revealed the importance of these protein/protein interactions, little is known concerning the mechanisms of recruitment and activation of the decapping enzyme by its numerous co-factors. Moreover, in the absence of Dcp2 in complex with a capped RNA, molecular details of cap recognition and cleavage are lacking. My thesis project aims at answering these open questions with the structural and functional studies of the decapping machinery, using yeast Saccharomyces cerevisiae as a model organism, as most of decapping actors are well conserved among eukaryotes. For this purpose, I expressed and purified the majority of the decapping factors and reconstituted several sub-complexes including Dcp2 and its cofactors.
4

Structural Survey on Cohesin and Viomycin Inhibited 70S Ribosome by Single Particle Electron Microscopy

Hons, Michael 12 May 2015 (has links)
No description available.
5

STRUCTURAL INSIGHTS INTO RECOGNITION OF ADENOVIRUS BY IMMUNOLOGIC AND SERUM FACTORS

Flatt, Justin Wayne 11 June 2014 (has links)
No description available.
6

Integrative Investigation and Modeling of Macromolecular Complexes

Ihms, Elihu Carl 27 May 2015 (has links)
No description available.
7

Biochemical and biophysical characterisation of the genetically engineered Type I restriction-modification system, EcoR124I NT

Taylor, James Edward Nathan January 2005 (has links)
The EcoR124INT restriction-modification (R-M) system contains the genes HsdS3, HsdM and HsdR. S3 encodes the N-terminal domain of the wild-type S subunit and has been shown to dimerise in solution (Smith et al., 1998). Following purification of the subunits of the EcoR124INT R-M system, complexes of the methyltransferase S3/M and restriction endonuclease S3/M/R were formed and shown to have activity in vitro, methylating and hydrolysing a symmetrical DNA recognition sequence, respectively. The DNA mimic OCR (overcome classical restriction) protein inhibited the methyltransferase activity in vitro, with maximum inhibition at a 1: 2 molar ratio of (S3/M)2 to an ocr dimer. Dynamic light scattering (DLS), sedimentation equilibrium (SE) and sedimentation velocity (SV) experiments showed S3 to exist as a dimer and S11 (the central conserved domain of S) to exist as a tetramer in solution. M was found to be dimeric in solution, whilst the R protein was monomeric. A complex of S3/M was found to have a stoichiometry (S3/M)2 and a complex of S3/M/R had a stoichiometry of S3/M/R1, even when a 2: 1 molar ratio of R to S3/M, was added. Small angle neutron scattering (SANS) experiments provided values for the radius of gyration (Rg), which for S3 was comparable to that calculated for the recently published crystal structure of the S subunit from Methanococcus jannaschii (Kim et al., 2005). These experiments also showed a decrease in the Dmax in the presence of the 30 bp DNA recognition sequence from 200A to 140A, suggesting a similar conformational change in the positioning of the subunits as has been detected for the wild-type M. EcoR124I and a related type 1 1/2 system AhdI. This change following DNA binding was also observed by SV experiments. Furthermore ab initio modelling from the SANS data has provided a low-resolution structure for the EcoR124INT MTase and its complex with DNA.
8

Analyse biochimique et inhibition de complexes macromoléculaires dans des cellules humaines et bactériennes

Oudouhou, Flore 08 1900 (has links)
No description available.
9

CtBPs and IRF3 at the Intersection of Transcriptional Regulation by Macromolecular Complexes

Jecrois, Anne M. 13 May 2021 (has links)
Transcriptional deregulation has emerged as one of the leading causes in various human diseases. More than fifty percent of cancers arise due to frequent mutations in genes regulating transcription. Higher-order assembly via protein-protein interactions is one common mechanism of transcriptional regulation. Despite their critical role in regulating gene transcription and therapeutic relevance, detailed mechanistic understanding of these assemblies remains scarce. The primary focus of this thesis is to uncover important structural principles underlying the assembly and stability of multi-domain protein assemblies by characterizing components of the IFNβ enhanceosome and the CtBP-mediated repression complex. Using a combination of biochemical and structural analyses, I showed that the transcriptional activator C-terminal binding protein 2 (CtBP2) is a tetramer by solving the 3.6Å cryoEM structure of CtBP2. I highlighted the types of interactions that stabilize the homo-tetramer and showed the relevance of the tetramer in CtBP2 transcriptional activity. Second, I used an integrative approach to investigate the structural features leading to activation of interferon regulator factor 3 (IRF3) and its interaction with DNA. Although this work mostly focused on components of the CtBP2-mediated complex and IFNβ enhanceosome, the principles described here can be applied to other complexes. Therefore, these studies provide an overall understanding on how other macromolecular complexes regulate gene transcription. Furthermore, our structural-based analyses will provide a basis for designing drugs that can regulate gene transcription in cancer and immunological disorders.

Page generated in 0.0825 seconds