• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RNA-protein crosslinking identifies novel targets for the nuclear RNA surveillance machinery

Wlotzka, Wiebke January 2011 (has links)
The RNA binding proteins Nrd1 and Nab3 function in transcription termination by RNA Pol II, acting via interactions with the CTD of the largest polymerase subunit, particularly on snRNA and snoRNA genes. They also participate in nuclear RNA surveillance and ncRNA degradation, functioning together with the exosome and the Trf-Air-Mtr4 polyadenylation (TRAMP) complexes. To better understand the signals for surveillance and ncRNA degradation, I applied an RNA-protein crosslinking approach in combination with Solexa sequencing. This approach identified in vivo binding sites for Nrd1, Nab3 and Trf4. Several million sequences were recovered and mapped to the yeast genome. This identified three classes of substrates: 1) Expected targets, including snRNAs, snoRNAs and characterized short ncRNAs. 2) Unknown but anticipated substrates, including several hundred previously uncharacterized ncRNAs that lie antisense to protein coding genes (asRNAs). 3) Unexpected targets, including many Pol III transcribed precursor RNAs. Bioinformatics analyses of the high-throughput sequencing data revealed that known binding motifs for Nrd1 and Nab3 were frequently recovered. Many recovered RNAs contained non-templated oligo(A) tails with an average of 2-5 nt length. This clearly distinguishes targets for surveillance machinery from polyadenylated mRNAs that get stabilized by polyadenylation (A70-90 in yeast). For a few selected, predicted asRNAs I was able to validate the crosslinking data by demonstrating that corresponding long RNAs are both detectable and increased by loss of Nrd1, Nab3, Trf4 or the exosome component Rrp6. Interestingly, loss of Nrd1 or Nab3 led to transcriptional read through on long asRNA transcripts. In addition, I have identified pre-TLC1 (telomerase RNA) as a target for the surveillance machinery. Processing of this long ncRNA was only poorly characterized in yeast but I could demonstrate that its transcription termination and maturation is mainly dependent on actions of the Nrd1-Nab3-Sen1, TRAMP4 and exosome complexes. It was previously reported that Nrd1-Nab3 acts only on short RNAs, due to the association with Ser5 phosphorylated CTD. My findings suggest that action of Nrd1- Nab3 is not exclusively on Ser5 phosphorylated form of the CTD. Unexpectedly the Pol II associated factors Nrd1 and Nab3 bound Pol III precursor transcripts. Surveillance of Pol III transcripts was dependent on Nrd1 and Nab3 since depletion of Nrd1 or Nab3 led to accumulation of pre-tRNAs. In addition, I could demonstrate that pre-RNase P RNA is oligoadenylated in vivo, which was dependent on Nrd1, Nab3 and Trf4. Together, my findings suggest a revised model of nuclear RNA surveillance in which Nrd1-Nab3 not only acts in co-transcriptional RNA recognition on Pol II transcripts but also post-transcriptionally on Pol III RNAs. The TRAMP complex is recruited to the defective RNA by the Nrd1-Nab3 complex, which remains associated with the RNA through the process of polyadenylation, until the exosome degrades the aberrant transcript.
2

RNase R: A Critical Player in the Degradation of Structured RNAs in Escherichia coli

Vincent, Helen Ann 20 August 2008 (has links)
Ribonucleases play essential roles in RNA metabolism. In Escherichia coli, the extensive degradation of RNAs that are defective or no longer required by the cell is carried out by one of three processive, 3' to 5' exoribonucleases. Relatively unstructured mRNAs are typically degraded by RNase II or PNPase. In contrast, mRNAs containing extensive secondary structure, and the highly structured rRNA and tRNA molecules, are degraded by PNPase and/or RNase R. However, RNase R differs from other exoribonucleases in that it is able to degrade through these structured RNAs without the aid of a helicase activity. Consequently, its mechanism of action is of great interest. In this dissertation, using a variety of specifically designed substrates, I show that a single-stranded overhang, which must be at least 5 nucleotides in length, is required for tight binding and subsequent degradation of double-stranded RNA by RNase R. Moreover, this overhang must be 3' to the duplex indicating that an RNA substrate must thread into the enzyme with 3' to 5' polarity. Using a series of truncated RNase R proteins, I show that the cold-shock domains and the S1 domain contribute to substrate binding. The cold-shock domains appear to play a role in substrate recruitment, while the S1 domain is required to position substrates for efficient catalysis. Furthermore, the nuclease domain alone is sufficient to bind and degrade structured RNAs. This is a unique property of the nuclease domain of RNase R since this domain in RNase II, a paralogue of RNase R, stalls as it approaches a duplex. RNase R binds RNA more tightly within its nuclease domain than RNase II. Through mutagenesis studies, I identify one amino acid, R572, within the nuclease domain of RNase R that contributes to this tight binding and the ability to degrade double-stranded RNA. Furthermore, I found that degradation of structured RNA is strongly dependent on temperature. Based on these data I propose that tight binding allows RNase R to capitalize on the natural thermal breathing of an RNA duplex to degrade structured RNA.
3

Structural Studies of Prokaryotic and Eukaryotic Oligoribonucleases

Nelersa, Claudiu M. 13 May 2009 (has links)
RNA metabolism includes all the processes required for RNA synthesis, maturation, and degradation in living cells. Ribonucleases (RNases) are involved in RNA maturation and degradation, two essential processes in gene expression and regulation in both prokaryotes and eukaryotes. Oligoribonuclease (Orn) has an important role in eliminating small oligonucleotides (nano-RNA), the last step in mRNA degradation. In E. coli, Orn is the only essential exoribonuclease. The enzyme has been shown to form a stable dimer, both in solution and in the crystalline form. Analysis of the three-dimensional structure of Orn allowed us to hypothesize that dimerization is essential for enzyme catalysis. In order to test the hypothesis, I analyzed a number of deletion and point mutants of Orn and determined that tryptophan 143 is essential for dimerization. A W143A mutant is unable to dimerize and has very little activity, similar to that of an active site mutant (D162A). The atomic structure of the W143A mutant, solved at a resolution of 1.9 Å, showed that although the overall three-dimensional fold is similar to that of the wild-type protein, minor differences exist that could account for the monomeric behavior in solution. A flexible Arg174 is repositioned into the cavity created by the missing Trp143. In this new orientation Arg174 protrudes into a hydrophobic pocket in the dimerization interface and is proposed to produce sufficient unfavorable interactions to keep the monomers apart in solution. All these data suggest that dimerization of Orn is essential for its activity. The human homolog of Orn, also known as small fragment nuclease (Sfn), has been shown to degrade short single-stranded RNA, the last step in mRNA decay. In order to determine the mechanism of action of Sfn and its role in the cell, we solved the crystal structure of a truncated form of Sfn at a resolution of 2.6 Å. This mutant form of Sfn lacks the C-terminal 21 amino acids (Sfn-∆C21) yet is as efficient as full length Sfn on model substrates. Interestingly, Sfn is not as active as E. coli Orn in in vitro assays. Analysis of the atomic structure revealed that the active site cleft in Sfn is narrower than the corresponding active site in E. coli. We propose a model for how this narrower cleft may explain the lower in vitro activity. Bacillus subtilis does not have an Orn homolog and until recently, the enzyme responsible for nano-RNA degradation in this organism was unknown. YtqI (also termed nrnA or nanoRNase), a protein unrelated to E. coli Orn, was recently shown to be responsible for the digestion of oligonucleotides in B. subtilis. In order to better understand the mechanism of action of YtqI, I solved its crystal structure at a resolution of 2.0 Å. The nuclease has a RecJ-like fold with two globular domains connected via a flexible linker that forms a central groove. On one side of the groove, the larger N-terminal domain harbors the putative active site, while on the opposite side, the C-terminal domain includes a putative RNA binding domain. The structure of YtqI provides insights into how this enzyme binds and digests oligoribonucleotides. The studies described here provide a better understanding of the mechanism of action for several exoribonucleases that act on nano-RNA oligonucleotides - Oligoribonuclease from E. coli, its close homolog in humans (Small fragment nuclease), as well as a functional homolog in Bacillus (YtqI). This work is relevant to understanding RNA metabolism, which is an essential process for survival of both eukaryotic and prokaryotic organisms.
4

The Molecular Machinery Critical to the Degradation of Cellular RNA

Schmier, Brad J. 03 March 2012 (has links)
Exoribonucleases are indispensable for cellular RNA metabolism. RNA processing, end-turnover, and degradation all require the concerted action of exoribonucleases. In this thesis, two families of exoribonucleases that act in the final steps of RNA decay pathways are explored. The first of these is the RNR superfamily of processive 3’→5’ RNases with major roles in both mRNA and stable RNA degradation. The initial focus of this work is the structural and enzymatic characterization of an unusual RNR family enzyme from the radiation-resistant bacterium Deinococcus radiodurans. This enzyme is demonstrated biochemically to be an RNase II-type enzyme (DrII), based on its sensitivity to secondary structure. Analysis of the DrII X-ray structure reveals that a novel, winged-HTH domain has replaced the canonical RNA binding clamp typical of RNR family proteins. The exposed architecture of DrII’s RNA binding surface offers an explanation for the nuclease’s ability to approach within 3-5 nt of a duplex, an important mechanistic difference from the well-studied E. coli RNase II. The open, clamp architecture of DrII may have broader relevance to mechanisms of duplex RNA recognition in the RNR superfamily. RNA decay by processive exonucleases such as RNR family proteins leaves 2-5 nt nanoRNA limit products that are further degraded to mononucleotides by nanoRNases. In E. coli, the DEDD family enzyme Oligoribonuclease (ORN) executes nanoRNA decay and represents the first major family of nanoRNases, with homologs widely conserved in eubacteria and eukaryotes. The B. subtilis NanoRNase A (NrnA), a DHH family phosphoesterase, represents a second major class of nanoRNases, with broad phylogenetic distribution in organisms that lack orn homologs. The second major focus of this thesis is a structural and mechanistic study of this nanoRNase machinery. The atomic structure of the B. subtillis nanoRNase NrnA is described, and unveils a bi-lobal architecture similar to the 5’→3’ DNase RecJ, where the catalytic DHH domain is linked via a partially helical connector to the C-terminal RNA binding domain. NrnA is a highly dynamic molecule, adopting both open and closed conformations. Co-crystallization with several substrates shows that NrnA has a nanoRNA specific substrate-binding patch that offers a structural explanation for its 3’→5’ nanoRNase activity. This RNA binding site feeds substrate to the DHH active site in an orientation opposite to the 5’→3’ path proposed for RecJ. Surprisingly, NrnA also maintains a weak 5’→3’ activity on certain substrates, and thus possesses both 5’→3’ and 3’→5’ exonuclease activities. In conclusion, an overall model is presented for how DHH family exonucleaess can degrade nucleic acids from both the 5’→3’ and 3’→5’ directions. Thus, the studies described in this thesis offer both an atomic and a biochemical view of the macromolecular machinery critical to the degradation of RNA.
5

EF-Tu and RNase E : Essential and Functionally Connected Proteins

Hammarlöf, Disa L. January 2011 (has links)
The rate and accuracy of protein production is the main determinant of bacterial growth. Elongation Factor Tu (EF-Tu) provides the ribosome with aminoacylated tRNAs, and is central for its activity. In Salmonella enterica serovar Typhimurium, EF-Tu is encoded by the genes tufA and tufB. A bacterial cell depending on tufA499-encoded EF-Tu mutant Gln125Arg grows extremely slowly. We found evidence that this is caused by excessive degradation of mRNA, which is suggested to be the result of transcription-translation decoupling because the leading ribosome is ‘starved’ for amino acids and stalls on the nascent mRNA, which is thus exposed to Riboendonuclease RNase E. The slow-growth phenotype can be reversed by mutations in RNase E that reduce the activity of this enzyme. We found that the EF-Tu mutant has increased levels of ppGpp during exponential growth in rich medium. ppGpp is usually produced during starvation, and we propose that Salmonella, depending on mutant EF-Tu, incorrectly senses the resulting situation with ribosomes ‘starving’ for amino acids as a real starvation condition. Thus, RelA produces ppGpp which redirects gene expression from synthesis of ribosomes and favours synthesis of building blocks such as amino acids. When ppGpp levels are reduced, either by over-expression of SpoT or by inactivation of relA, growth of the mutant is improved. We suggest this is because the cell stays in a fast-growth mode. RNase E mutants with a conditionally lethal temperature-sensitive (ts) phenotype were used to address the long-debated question of the essential role of RNase E. Suppressor mutations of the ts phenotype were selected and identified, both in RNase E as well as in extragenic loci. The internal mutations restore the wild-type RNase E function to various degrees, but no single defect was identified that alone could account for the ts phenotype. In contrast, identifying three different classes of extragenic suppressors lead us to suggest that the essential role of RNaseIE is to degrade mRNA. One possibility to explain the importance of this function is that in the absence of mRNA degradation by RNase E, the ribosomes become trapped on defective mRNAs, with detrimental consequences for continued cell growth.
6

Conformationally Constrained Oligonucleotides for RNA Targeting

Li, Qing January 2012 (has links)
A short oligonucleotide sequence as in a single-stranded antisense oligo nucleotides (AON) or in double-stranded small interfering RNAs (siRNA) can modulate the gene expression by targeting against the cellular mRNA, which can be potentially exploited for therapeutic purposes in the treatment of different diseases. In order to improve the efficacy of oligonucleotide-based drugs, the problem of target affinity, nuclease stability and delivery needs to be addressed. Chemical modifications of oligonucleotides have been proved to be an effective strategy to counter some of these problems. In this thesis, chemical synthesis of conformationally constrained nucleosides such as 7′-Me-carba-LNA-A, -G, -MeC and -T as well as 6′, 7′-substituted α-L-carba-LNA-T (Papers I-III) was achieved through a key free-radical cyclization. 1D and 2D NMR techniques were employed to prove the formation of bicyclic ring system by free-radical ring closure as well as to identify the specific constrained conformations in sugar moieties. These sugar-locked nucleosides were transformed to the corresponding phosphoramidites and incorporated into antisense oligonucleotides in different sequences, to evaluate their physicochemical and biochemical properties for potential antisense-based therapeutic application. AONs modified with 7′-Me-carba-LNA analogues exhibited higher RNA affinities (plus 1-4°C/modification) (Papers I & III), but AONs containing α-L-carba-LNA analogues showed decreased affinities (minus 2-3°C/ modification) (Paper II) towards complementary RNA compared to the native counterpart.  It has been demonstrated in Papers I-III that 7′-methyl substitution in α-L-carba-LNA caused the Tm drop due to a steric clash of the R-configured methyl group in the major groove of the duplex, whereas 7′-methyl group of carba-LNA locating in the minor groove of the duplex exerted no obviously negative effect on Tms, regardless of its orientation. Moreover, AONs containing 7′-Me-carba-LNA and α-L-carba-LNA derivatives were found to be nucleolytically more stable than native AONs, LNA modified AONs as well as α-L-LNA modified ones (Papers I-III). We also found in Paper II & III that the orientations of OH group in C6′ of α-L-carba-LNAs and methyl group in C7′ of 7′-Me-carba-LNAs can significantly influence the nuclease stabilities of modified AONs. It was proved that the methyl substitution in cLNAs which points towards the vicinal 3′-phosphate were more resistant to nuclease degradation than that caused by the methyl group pointing away from 3′-phosphate. Additionally, AONs modified with 7′-Me-carba-LNAs and α-L-carba-LNAs were found to elicit the RNase H mediated RNA degradation with comparable or higher rates (from 2-fold to 8-fold higher dependent upon the modification sites) as compared to the native counterpart. We also found that the cleavage patterns and rates by E. coli RNase H1 were highly dependent upon the modification sites in the AON sequences, regardless of the structural features of modifications (Papers II & III). Furthermore, we have shown that the modulations of Tms of AON/RNA duplexes are directly correlated with the aqueous solvation (Paper III).
7

Identification d'une Terminal Uridylyl Transférase impliquée dans la protection de l'extrémité 3' des ARNm déadénylés chez Arabidopsis thaliana / Identification of a terminal uridylyl transferase implicated in the protection of deadenylated messager RNAs 3' end in Arabidopsis thaliana

Sement, François 27 September 2012 (has links)
Le travail présenté dans ce manuscrit a permis de définir un nouveau rôle de l’uridylation des ARNm en utilisant Arabidopsis comme organisme d’étude. L’uridylation des ARN est catalysée par des ARN nucléotidyltransférases de la famille des poly(A) polymérases non canoniques ou ncPAP. Parmi les 14 gènes codant pour des ncPAP chez Arabidopsis, nous avons identifié une terminale uridylyl transférase, TUT1, responsable de l’uridylation des ARNm. Nos résultats montrent que TUT1 uridyleles ARNm après une étape de déadénylation. Cette uridylation ne modifie pas la vitesse de dégradation des ARNm mais est essentielle pour prévenir l’attaque des extrémités 3’ des ARNm déadénylés par des activités 3’-5’ exoribonucléasiques et la formation de transcrits aberrants tronqués en 3’. De manière intéressante, cette protection par l’uridylation peut être détectée au niveau des polysomes. Une des fonctions biologiques de l’uridylation des ARNm consiste à établir une polarité de 5’ en 3’ de la dégradation des ARNm. Cette polarité pourrait être essentielle dans le cas d’une dégradation des ARNm en cours de traduction. / The work presented in this manuscript defines a new role of mRNA uridylation, using Arabidopsis as a model organism. RNA uridylation is catalyzed by RNA nucleotidyltransferases belonging to the non canonical poly(A) polymerase (ncPAP) family. Among the 14 genes encoding ncPAPs in Arabidopsis, we identified a terminal uridylyl transferase, TUT1, responsible for mRNA uridylation. Our results show that mRNAs are uridylated by TUT1 after a deadenylation step. Uridylation doesn’t modify mRNA degradation rates but is essential for deadenylated mRNA 3’ end protection against 3’- 5’ exoribonucleolytic attacks and to prevent 3’ truncated aberrant mRNA formation. Interestingly, this protection by uridylation is detected in polysomes. One biological function of mRNA uridylation is to establish a 5’-3’ mRNA degradation polarity that could be essential in the case of cotranslational mRNA decay.
8

Increasing the evidential value of biological evidence

Hampson, Clint January 2014 (has links)
With current scientific technologies, a significant amount of genetic information can be obtained from biological evidence found at a crime scene. Not only is it possible to identify the donor of the evidence through routine DNA profiling techniques, but new RNA based methods are being developed to determine the tissue type as well as the physical characteristics of the donor. Despite the information that can be obtained, the ability to determine the age or time the biological material was deposited at the crime scene has eluded the forensic community thus far. Timing is critically important as it could help police determine when the crime was committed. In this body of work an investigation was conducted into whether the degradation rates of nucleic acid macromolecules could serve as molecular clocks for age estimations. An attempt was made to gain a better understanding of the degradation products produced from an internal urban environment and to develop an optimal assay accordingly. A number of different RNA based techniques for ageing both hair and blood samples were also examined. Degradation assays have been traditionally designed around amplicon size however, it was established that testing loci stability is an essential requirement in the optimisation process. The results presented in this thesis suggest the reliability of the data can be increased when the two competing target species are selected from the same loci, which minimised the effect of loci susceptibility to degradation. It was determined that blood stains aged up to 60 days in an internal urban environment were best distinguished (in terms of age estimations) by using targets that differed in size by 170 to 240 base pairs, with one of the targets being between 200 and 300 base pairs in length. Despite using a robust TH01 qPCR assay it was established that an internal “urban” environment was not as stable as predicted and that seasonal temperature variation had a large effect on degradation rates. Interpretation of the results was therefore limited suggesting these optimised target sizes may only be relevant to the winter months. Using a carefully designed hermetically sealed dry swab we were able to remove moisture and inhibit the growth of DNA consuming micro-organisms. It was determined that bacteria alone can cause a 2-fold increase in the degradation rate of a sample aged at room temperature. In terms of integrity, storing samples at room temperature in a moisture free environment was equivalent to storing standard samples (exposed to normal humidity levels) in refrigerated conditions. It was also determined that the effect of bacterial degradation can be halved by lowering the storage temperature from room temperature to 4°C. RNA was examined in an attempt to reduce the large variations that had inhibited previous DNA methodologies. IL-6 and TNF-α were initially selected due to their rapid post-extraction change in expression levels. However, their levels were highly variable, unpredictable and therefore not suitable for this type of analysis even on samples that had been aged for only ten days. It is thought that their dynamic roles in a number of haemopoietic processes could be responsible for the poor results. A new RNA methodology, as described by Nolan et al (2008) was used to analyse samples that had been aged over 80 days. Four targets, AMICA1, MNDA, CASP1 and GAPDH were chosen based on their cell lineage as it was hypothesised that inter-donor variation could be reduced by using targets confined to the granulocytic cell lineage. Using the novel 3’/5’ assay, AMICA1, MNDA and CASP1 all performed poorly and no correlation could be determined between the 3’/5’ ratio and sample age. GAPDH showed some encouraging results with a correlation of 0.912 (age to 3’/5’ ratio) although initial stability over the first 20 days and the inter-donor variation were still limiting factors. It was also thought that the various mRNA degradation processes, in particular the 5’/3’ exonuclease activity, contributed to the poor results generally. A large inter-donor variation was a common aspect to all the blood based methodologies trialled. This meant that none of the methods had any practical value. As a result, an alternative RNA method was used to determine if it was possible to age another forensically important type of biological evidence; hair. Using a Reverse Transcription Quantitative PCR (RT-qPCR) assay, we monitored the Relative Expression Ratio (RER) of two different RNA species (18S rRNA and B-actin mRNA) in hair samples that were aged naturally over a period of three months. Overall the results presented here suggest that the age of hair samples containing follicular tags can be approximated using a second order polynomial (Age = 3.31RER2 - 2.85RER – 0.54), although with limitations.
9

Transcriptome maps of general eukaryotic RNA degradation factors and identification and functional characterization of the novel mRNA modification N<sup>3</sup>-methylcytidine

Hofmann, Katharina Bettina 06 May 2019 (has links)
No description available.
10

Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA

Yuan, Fenghua, Dutta, Tanmay, Wang, Ling, Song, Lei, Gu, Liya, Qian, Liangyue, Benitez, Anaid, Ning, Shunbin, Malhotra, Arun, Deutcher, Murray P., Zhang, Yanbin 22 May 2015 (has links)
3′ repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native tRNA substrates. Previously reported TREX1 crystal structures have revealed that the substrate binding sites are open enough to accommodate the extra hydroxyl group in RNA, further supporting our conclusion that TREX1 acts on RNA. These findings indicate that its RNase activity needs to be taken into account when evaluating the physiological role of TREX1.

Page generated in 0.344 seconds