481 |
Moderní prášková hnojiva s růstovými stimulátory a jejich využití při zalesňování v Krušných horáchSlivková, Tereza January 2018 (has links)
This diploma thesis deals with the use of modern powder fertilizers with growth stimulators, which were used for afforestation of hollow Norway spruce (Picea abies / L./Karst.) after bulldozer soil preparation in the Ore Mountains at LS Klášterec nad Ohří. On these scarified areas of the 7th forest vegetation stage two research areas of Bojiště and Kiosek were established. The battlefield area Bojiště was divided into 6 plots, one of which served only as a check. On these parcels were distinguished Norway spruce (Picea abies / L./Karst.) specimens from growing trees (A) and seedlings (B). Norway spruce seedlings were fertilized with fertilizers series Silvamix® (Sivamix® SR50 + S2, Silvamix® SR30 + S2 and Agluform 90S + S2) and organomineral fertilizers Vermaktiv Stimul and Fungil. Samples of the last year of needles were taken once per year, as well as samples of the soil environment. Support of nutrients were extended and growth spruce cultivation especially by using fertiliziers series Silvamix®. Individual fertilizers were contributed to the promotion of the different nutrients, of course in relation to the composition of fertilizers. Further these fertilizers contributed to improving the vitality of individuals Norway spruce (Picea abies / L./Karst.). The area of the Kiosek was treated with the new fertilizer UNICON. On this area carried two years of research for the sampling of soil samples and the last year needles of Norway spruce (Picea abies / L./Karst.). Against a control variant UNICON has demonstrated the benefits of optimizing the soil enviroment of sprececulture. The overall effect of this fertilizer contributed growth of individuals on the surface and the overall balancing takings nutrients.
|
482 |
Influence of Graphite type on copper diffusion in P/M copper steelsJonnalagadda, Krishna Praveen January 2012 (has links)
One main reason for the use of Fe-Cu-C system in PM industry is the presence of liquid phase (copper) at the start of sintering (1120oC). The diffusion of liquid copper into iron causes swelling in the structure. This in turn can cause high dimensional change and, if not controlled properly, may cause distortion. So it is of paramount importance to control the copper diffusion. Carbon, added as graphite, reduces the swelling of copper by changing the dihedral angle. The affect of graphite on copper diffusion depends on the graphite type, particle size of graphite and heating rate. The aim of this work was to find the influence of graphite type and particle size of graphite on copper diffusion. Water Atomized iron (ASC100.29) produced in Höganäs AB was taken as the base powder. Two types of graphite were used each with two different particle sizes. Two different graphite quantities (0.2% & 0.8%) for each type was taken. Natural fine graphite (UF4), Natural coarse graphite (PG44), Synthetic fine graphite (F10) and Synthetic coarse graphite (KS44) were the graphites used in this work. Powders were compacted at 600 Mpa and the sintering was done at 1120oC for 30 minutes in 90/10 N2/H2. Dilatometry and metallographic investigation of the samples sintered in the production furnace were used to understand the graphite influence. The investigation showed that at low graphite levels (0.2%), the affect of graphite type or graphite size was not significant on copper diffusion. At high graphite levels (0.8%), synthetic graphites were more effective in reducing the swelling of copper. Influence of particle size of synthetic graphites on Cu diffusion was not significant compared to the influence of particle size of natural graphite. There was also a considerable affect of heating rate on graphite dissolution and copper swelling.
|
483 |
Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical PropertiesThurber, Casey Ray 05 1900 (has links)
In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems that persist with corrosion. Two major alloys of copper-nickel, 90-10 and 70-30, were evaluated for microbial corrosion protection in marine environments on a stainless steel substrate. Copper and copper alloys are commonly used in marine environments to resist biofouling of materials by inhibiting microbial growth. Literature surveying the electrodeposition of Cu-Ni incorporated with nano- to micro- particles to produce metal matrix composites has been reviewed. Also, a novel flow cell design for the enhanced deposition of metal matrix composites was examined to obtain the optimal oriented structure of the layered silicates in the metal matrix. With the addition of montmorillonite into the Ni and Cu-Ni matrix, an increase in strength, adhesion, wear and fracture toughness of the coating occurs, which leads to an increase corrosion resistance and longevity of the coating. These coatings were evaluated for composition and corrosion using many different types of instrumental and electrochemical techniques. The overall corrosion resistance and mechanical properties were improved with the composite films in comparison to the pure metals, which proves to be advantageous for many economic sectors including the oil and gas industry.
|
484 |
RNAi Knockdown of Par-4 Inhibits Neurosynaptic Degeneration in ALS-Linked MiceXie, Jun, Awad, Keytam S., Guo, Qing 01 January 2005 (has links)
Evidence from human amyotrophic lateral sclerosis (ALS) patients and ALS-linked Cu/Zn superoxide dismutase (Cu/Zn-SOD) transgenic mice bearing the mutation of glycine to alanine at position 93 (G93A) suggests that the pro-apoptotic protein prostate apoptosis response-4 (Par-4) might be a critical link in the chain of events leading to motor neuron degeneration. We now report that Par-4 is enriched in synaptosomes and post-synaptic density from the ventral horn of the spinal cord. Levels of Par-4 in synaptic compartments increased significantly during rapid and slow declining stages of muscle strength in hSOD1 G93A mutant mice. In the pre-muscle weakness stage, hSOD1 G93A mutation sensitized synaptosomes from the ventral horn of the spinal cord to increased levels of Par-4 expression following excitotoxic and apoptotic insults. In ventral spinal synaptosomes, Par-4-mediated production of pro-apoptotic cytosolic factor(s) was significantly enhanced by the hSOD1 G93A mutation. RNA interference (RNAi) knockdown of Par-4 inhibited mitochondrial dysfunction and caspase-3 activation induced by G93A mutation in synaptosomes from the ventral horn of the spinal cord, and protected spinal motor neurons from apoptosis. These results identify the synapse as a crucial cellular site for the cell death promoting actions of Par-4 in motor neurons, and suggest that targeted inhibition of Par-4 by RNAi may prove to be a neuroprotective strategy for motor neuron degeneration.
|
485 |
Hydrogen Isotope Separation in Metal-Organic FrameworksZhang, Naiyuan 10 December 2018 (has links)
No description available.
|
486 |
Behavior of Copper Contamination for Ultra-Thinning of 300 mm Silicon Wafer down to <5 μmMizushima, Yoriko, Kim, Youngsuk, Nakamura, Tomoji, Sugie, Ryuichi, Ohba, Takayuki 22 July 2016 (has links)
Bumpless interconnects and ultra-thinning of 300 mm wafers for three-dimensional (3D) stacking technology has been studied [1, 2]. In our previous studies, wafer thinning effect using device wafers less than 10 μm was investigated [3, 4]. There was no change for the retention time before and after thinning even at 4 μm in thickness of DRAM wafer [5]. In this study, the behavior of Cu contamination on an ultra-thin Si stacked structure was investigated. Thinned Si wafers were intentionally contaminated with Cu on the backside and 250 °C of heating was carried out during the adhesive bonding and de-bonding processing. An approximately 200 nm thick damaged layer was formed at the backside of the Si wafer after thinning process and Cu particle precipitates ranged at 20 nm were observed by cross-sectional transmission electron microscopy (X-TEM). With secondary ion mass spectrometry (SIMS) and EDX analyses, Cu diffusion was not detected in the Si substrate, suggesting that the damaged layer prevents Cu diffusion from the backside.
|
487 |
Analysis of Hot Isothermal Copper Extrusion for Multi-Channel ProfilesBarkley, Benjamin Z. 24 September 2013 (has links)
No description available.
|
488 |
Electrochemical and Partial Oxidation of CH4Singh, Rahul 12 May 2008 (has links)
No description available.
|
489 |
Metal release from powder particles in synthetic biological mediaMidander, Klara January 2006 (has links)
Humans are exposed to metals and metal-containing materials daily, either conscious, e.g. using metal tools or objects, or unconscious, e.g. during exposure to airborne metal-, and metal-containing particles. The diffuse dispersion of metals from different sources in the society, and the concern related to its potential risk for adverse effects on humans have gained an increased public and governmental attention both on a national and international level. In this context, the knowledge on metal release from metallic objects or metal-containing particles is essential for health risk assessment. This thesis focuses on the study of metal release from powder particles of stainless steel and Cu-based materials exposed to synthetic body fluids mainly for simulating lung-like environments. The study comprises: i) development of a suitable experimental method for metal release studies of micron sized particles, ii) metal release data of individual alloy constituents from stainless steel powder particles of different particle sizes, and iii) Cu release from different Cu-based powder particles. In addition, the influence of chemical and physical properties of metallic particles and the test media are investigated. Selected results from Ni powder particles exposed to artificial sweat are presented for comparison. The outcome of this research is summarized through ten questions that are formulated to improve the general understanding of corrosion-induced metal release from metallic particles from a health risk perspective. A robust, reproducible, fairly simple, and straightforward experimental procedure was elaborated for metal release studies on particles of micron or submicron size. Results in terms of metal release rates show, for stainless steel powder particles, generally very low metal release rates due to a protective surface oxide film, and Fe preferentially released compared to Cr and Ni. Metal release rates are time-dependent for both stainless steel powder particles and the different Cu-containing powders investigated. The release of Cu from the Cu-containing particles depends on the chemical and compositional properties of the Cu-based material, being either corrosion-induced or chemically dissolved. Moreover, the test medium also influences the metal release process. The metal release rate increases generally with decreasing pH of the test media. However, even at a comparable pH, the release rate may be different due to differences in the interaction between the particle surface and specific media. The nature of particles is essentially different compared to massive sheet in terms of physical shape, surface composition and morphology. The surface area, and even the surface composition of metallic particles, depend on the particle size. The specific surface area of particles, area per mass, is intimately related to the particle size and has a large effect on the metal release process. Release rates increase with decreasing particle size due to a larger active surface area that takes part in the corrosion/dissolution process. The surface area that actually is active in the corrosion and metal release process (the effective area) governs the metal release process for both particles and massive sheet of metals or alloys. For particles, the effective surface area depends also on agglomeration conditions of particles during exposure. / QC 20101119
|
490 |
Differentiating Callous-Unemotional Traits Within PsychopathyDecrop, Romain 29 August 2022 (has links)
No description available.
|
Page generated in 0.0289 seconds