491 |
Effect Of Annealing On Copper Thin Films:the Classical Size Effect And AgglomerationGadkari, Parag 01 January 2005 (has links)
With continued shrinking of CMOS technology to reduce the gate delay times, an increase in the resistivity of the metal corresponding to the wire dimension is a concern. This phenomenon of increase in resistivity with decreasing dimension of the thin metallic film or interconnect is known as the "classical size effect". Various theories have been postulated to explain the phenomenon of classical size effect; these theories can be broadly classified as resistivity due to scattering arising from surface and grain boundaries. The total resistivity of metals depends on the electron scattering due to impurities, phonons, surfaces, grain boundaries, and other crystal defects. Managing the size effect in a practical and manufacturing way is of major concern to the microelectronics industry. Since each of the processes (phonon, surface and grain boundary scattering) adds to the resistivity and are interrelated, it further complicates managing the size effect. However, these effects have been separately studied. In this work, the effect of annealing on the classical size effect in Cu thin films deposited on SiO2 substrate is investigated. Polycrystalline Cu thin films having thicknesses in the range of 10nm to 200nm were ultra high vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150°C to 800°C in argon and argon+3% hydrogen gases. The un-annealed Cu thin films exhibit higher resistivity than the annealed films. The resistivities of un-annealed films were in good agreement with Mayadas and Shatzkes model. When annealed the films undergoes grain growth resulting in lowering the resistivities by about 20%-30% thereby confirming the role of grain size on resistivity of the film. However, there is a limit to annealing, i.e. agglomeration phenomenon. Agglomeration is a thermally activated process resulting in a reduction of the free energy of the filmsubstrate system and can occur well below the melting point of the material by surface and interfacial diffusion. The reduction of film-substrate interfacial energy, film-surface interfacial energy and stresses within the film are possible driving forces for agglomeration. This work also includes the study of agglomeration phenomenon. The agglomeration behavior of Cu is investigated and compared with that of Ru, Au and Pt thin films with thicknesses in the range of 10 nm to 100 nm UHV deposited on thermally grown SiO2 substrate. The films were annealed at temperatures in the range of 150°C to 800°C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play important part in deciding the mode of void growth in Au and Pt thin films. Lastly, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer, which in turn improves the resistivity of the thin film due to prolonged grain growth without film breakup.
|
492 |
Geochemical Study of Trace and Critical Elements in Chalcopyrite and Pyrite from the Assarel Porphyry-Cu-Au Deposit, Bulgaria / Spårelement i kopparkis och pyrit från Cu-Au-porfyrmalmen i Assarel, Bulgarien, med fokus på kritiska metallerLobo, Liz January 2022 (has links)
No description available.
|
493 |
PHD THESIS: CONTROLLED DIFFUSION SOLIDIFICATION PROCESS (CDS) OF AL-7XXX WROUGHT ALLOYS: HEAT TREATMENT,MICROSTRUCTURE, AND MECHANICAL PROPERTIESGHIAASIAAN, SEYED REZA 09 1900 (has links)
Casting, Solidification, Aluminum, Physical Metallurgy, Mechanical Metallurgy, Strengthening Model, Aluminum Wrought Alloys, Aluminum 7xxx Series, Al-Zn-Mg-Cu / Over the past decades, researchers in casting fields, especially in semi-solid metal state, have endeavored to find new ways to enable the Al wrought alloys of casting using the conventional casting processes; mainly in order to improve the product properties and decrease the product cost. The thixoforming and rheocasting processes have been presented as ways by which the microstructure of Al-base wrought alloys can be changed into non-dendritic, which in turn can lead to improvement to the mechanical properties. This can be because the effect of the non-dendritic microstructure on the mechanical properties of the material. Unfortunately, these processes have proved to be cost prohibitive and be a bit complicated for commercial applications. Further, conventional casting of Al-base wrought alloys along with their superior properties and performance have been a challenge for foundry industry due to the main disadvantage of hot tearing or hot cracking during solidification process. This can render the cast component ineffective. To overcome the disadvantages of thixoforming and rheocasting processes, Controlled Diffusion Solidification (CDS) process was innovated mainly to enable casting of aluminum wrought alloys with a non-dendritic morphology of the primary Al phase in the resultant cast microstructure and thus alleviating the problem of hot tearing and obtaining a cost effective product with improved mechanical properties. The CDS is a simple process involving mixing of two precursor alloys of different thermal masses (temperature and solute) and subsequently casting the resultant mixture of the desired solute composition and temperature as a near net shaped cast product. The process can easily be commercialized with a marginal capital cost required for set up such as the addition of an extra holding furnace. Further, the CDS process would prove itself to be unique in its ability to cast Al-based wrought alloys into near net shaped components without additional processes and cost.
The originality of this study is to present a viable casting process for the Al-7xxx wrought alloys (Al-Zn-Mg-Cu); by which the Al-7xxx family alloys are presented in cast condition to have an acceptable uniaxial property range that is comparable with their wrought counterparts.
This study presents the process and alloy parameters necessary for the casting of Al-7xxx wrought alloys (Al-Zn-Mg-Cu), by using the CDS process coupling with tilt pour gravity casting (TPGC) machine. The uniaxial tensile mechanical properties of several Al-7xxx CDS castings under various heat treatment conditions, namely, solutionizing (T4), peak aged (T6) and annealing (O), necessary for development of an ageing process on the material were investigated and presented. The tilt pour gravity casting process coupled with the CDS technology was employed to demonstrate the ability to cast Al-7xxx wrought alloys into high integrity components with high strength and ductility. The microstructure characterization was carried out by Electron Microscopy (TEM, SEM and EDS) and DSC test experiments for all the as cast (F), T4, T6 and anneals (O) conditions of the CDS cast components. Also, the predictive capabilities for the yield strength of Al 7xxx alloys CDS cast components was investigated using structural-properties modeling for the various strengthening effects that are recently proposed specifically for the Al-7xxx wrought counterparts.
The study has successfully led to a more in-depth understanding of the innovative CDS casting process by applying it to several compositions of Al-7xxx wrought alloys in an industrial scale CDS casting experiments, using tilt pour gravity casting (TPGC) machine. This will hopefully lead us to a clearer path towards commercializing the CDS process and obtaining a viable casting process for Al-base wrought alloys into near net shape components without much change to economics of the casting process. / Dissertation / Doctor of Philosophy (PhD) / Casting, Solidification, Aluminum, Physical Metallurgy, Mechanical Metallurgy, Strengthening Model, Aluminum Wrought Alloys, Aluminum 7xxx Series, Al-Zn-Mg-Cu
|
494 |
SHAPE CASTING HIGH STRENGTH Al-Zn-Mg-Cu ALLOYS: INTRODUCING COMPOSITION-BEHAVIOR RELATIONSHIPSMazahery, Ali January 2016 (has links)
This project was funded by Automotive Partnership Canada (APC), an initiative created by the Government of Canada in an attempt to support significant, collaborative R&D activities in order to benefit the entire Canadian automotive industry. / High strength Al-Zn-Mg-Cu alloys have been increasingly employed in the transportation industry due to the increased demands for light structural components. However, their applications have been limited to relatively expensive wrought products. Application of the shape cast Al-Zn-Mg-Cu parts has never been the focus of attention due to their poor castability and mechanical properties. Improving the casting quality is expected to increase their utilization within the automotive industry. The poor castability and mechanical properties of some alloys in this family may be effectively improved through optimized chemistry control and melt treatment including grain refinement. The primary objective of this project is to optimize the chemistry and heat treatment of the Al-Zn-Mg-Cu alloy family that results in improved strength with acceptable level of ductility and casting quality relative to other shape cast Al alloys.
The Taguchi experimental design method was used to narrow down the number of required casting experiments required to meet the research objective. Three levels across four elements yielded a total of 9 Al-Zn-Mg-Cu alloys, which were cast using a tilt pour permanent mold process. The effect of each major alloying element on the microstructure, and mechanical properties was investigated. Tensile measurements were made on the 9 alloys subjected to two steps solution treatments. Mechanical properties such as yield strength (YS), ultimate tensile strength (UTS), and elongation at fracture (El.%) were experimentally measured and statistically analyzed.
An ANOVA analysis was employed to quantify the percentage contribution of the alloying elements on the material properties. Grain refinement was found to play a significant role in improving the hot tearing resistance and, thereby ameliorating quality. The alloying element that affected the YS and UTS to the greatest extent was Cu, followed by Zn. In contrast, the effect of Mg and Ti on YS and UTS was insignificant. Moreover, a decrease in Mg content had the greatest effect in enhancing the El.%.
A regression analysis was used to obtain statistical relationships (models) correlating the material properties with the variations in the content of the major alloying elements. The R-square values of YS, UTS, and El.% were 99.7 %, 98 %, and 90 %, respectively, showing that the models replicated the experimental results. Verification measurements made on shape cast Al-6Zn-2Mg-2Cu alloy revealed that the material property model predictions were in agreement with the experimentally measured values.
The results show that secondary and over ageing treatments of the shape cast Al-Zn-Mg-Cu alloys lead to superior combination of YS and El.%. The ongoing advances in shape casting of Al-Zn-Mg-Cu alloys with high will make them suitable choices for commercial load-bearing automotive components, when it comes to the selection of a material meeting the minimum requirements for strength, damage tolerance, cost and weight. / Thesis / Master of Applied Science (MASc)
|
495 |
Silver(I) and Copper(I) Complexes from Homoleptic to Heteroleptic: Synthesis, Structure and CharacterizationAlmotawa, Ruaa Mohammed 12 1900 (has links)
A plethora of novel scientific phenomena and practical applications, such as solid-state molecular solar cells and other optoelectronic devices for energy harvesting and lighting technologies, have catalyzed us to synthesize novel compounds with tunable properties. Synthetic routes, single crystal structures, and spectral and materials properties are described. Reactions of Ag(I) and Cu(I) precursors with various types of ligands -- including the azolates, diimines, and diiphosphines -- lead to the corresponding complexes in high yield. Varying the metal ions, ligands, synthetic methods, solvents, and/or stoichiometric ratio can change the properties including the molecular geometry or packing structure, reactivity, photophysical and photochemical properties, semiconducting behavior, and/or porosity of the functional coordination polymers obtained. For solar cells purposes, the absorption energy can be extended from the ultraviolet (UV) region, through the entire visible (Vis) region, onto a significant portion of the near-infrared (NIR) portion of the solar spectrum with high absorption coefficients due to the infinite conjugation of Cu(I) with diimine ligands. Twenty-eight crystal structures were obtained by conventional crystal growth methods from organic solvents, whereas their bulk product syntheses also included "green chemistry" approaches that precluded the use of hazardous organic solvents. The resulting products are characterized by powder x-ray diffraction (PXRD), Fouriertransform infrared (FTIR), nuclear magnetic resonance (NMR), UV/Vis/NIR absorption/diffuse reflectance/photoluminescence spectroscopies, and thermogravimetric analysis (TGA). Regarding the scientific phenomena investigated, the highlighting work in this dissertation is the discovery of novel bonding/photophysical/optoelectronic properties of the following materials: a black absorber with absorption from 200- 900 nm, a very stable compound with a bright green luminescence obtained by a solventless reaction, and a novel coordination polymer showing uncommon interaction of Ag(I) with three different types of diimine ligands simultaneously.
|
496 |
Mechanism of Biocorrosion Caused by Biofilms and Its MitigationLiu, Jialin January 2017 (has links)
No description available.
|
497 |
Fabrication of Ultrathin Palladium Composite Membranes by a New Technique and Their Application in the Ethanol Steam Reforming for H₂ ProductionYun, Samhun 25 April 2011 (has links)
This thesis describes a new technique for the preparation of ultrathin Pd based membranes supported on a hollow-fiber α-alumina substrate for H₂ separation. The effectiveness of the membranes is demonstrated in the ethanol steam reforming (EtOH SR) reaction in a membrane reactor (MR) for H₂ production.
The membrane preparation technique uses an electric-field to uniformly deposit Pd nanoparticle seeds on a substrate followed by deposition of Pd or Pd-Cu layers on the activated surface by electroless plating (ELP). The well distributed Pd nanoparticles allow for enhanced bonding between the selective layer and the substrate and the formation of gas tight and thermally stable Pd or Pd-Cu layers as thin as 1 µm, which is a record in the field. The best Pd membrane showed H₂ permeance as high as 5.0 × 10⁶ mol m²s⁻¹Pa⁻¹ and stable H²/N₂ selectivity of 9000 - 7000 at 733 K for 5 days. The Pd-Cu alloy membrane showed H₂ permeance of 2.5 × 10⁶ mol m⁻²s⁻¹Pa⁻¹ and H₂/N₂ selectivity of 970 at the same conditions.
The reaction studies were carried out with a Co-Na/ZnO catalyst both in a packed bed reactor (PBR) and in a MR equipped with the Pd or Pd-Cu membrane to evaluate the benefits of employing membranes. For all studies, ethanol conversion and hydrogen product yields were significantly higher in the MRs compared to the PBR. Average ethanol conversion enhancement and hydrogen molar flow enhancement were measured to be 12 % and 11 % in the Pd MR and 22 % and 19 % in the Pd-Cu MR, respectively. These enhancements of the conversion and product yield can be attributed to the shift in reaction equilibria by continuous hydrogen removal by the Pd based membranes. The comparative low enhancement in the Pd MR was found to be the result of significant contamination of Pd layer by CO or carbon compounds deposition during the reaction.
A one-dimensional modeling of the MR and the PBR was conducted using identical conditions and their performances were compared with the values obtained from the experimental study. The model was developed using a simplified power law and the predicted values matched experimental data with only minor deviations indicating that the model was capturing the essential physicochemical behavior of the system. Enhancements of ethanol conversion and hydrogen yield were observed to increase with rise in space velocity (SV), which could be explained by the increase in H₂ flux through the membranes with SV in the MRs. / Ph. D.
|
498 |
APLICACIÓN DE TÉCNICAS ESPECTROSCÓPICAS IN SITU AL ESTUDIO DE REACCIONES DE INTERÉS MEDIOAMBIENTAL: ELIMINACIÓN DE ÓXIDOS DE NITRÓGENOMoreno González, Marta 02 July 2015 (has links)
[EN] The Selective Catalytic Reduction of nitrogen oxides (SCR-NOx) is nowadays a very relevant process for reducing NOx emissions in diesel vehicles, which must comply with increasingly restrictive European regulations. In this thesis the reaction mechanism and active centers in Cu-zeolite catalysts with different structures has been investigated. For his purpose two in situ spectroscopic techniques were mainly used, being Nuclear Magnetic Resonance NMR and Electron Paramagnetic Resonance EPR, which allowed the detection of reaction intermediates and identification of Cu active species.
In particular we have studied the SCR-NOx reaction using NH3 as the reducing agent and Cu-zeolites catalysts with the chabazite structure. The preliminary study of the interaction of the catalysts with NH3 has shown the formation of several Cu-NH3 complexes with different stability. At SCR typical reaction temperatures (250 ° C), ammonia forms NH4+ ions in Brønsted acids centers of the zeolite and stable Cu+-(NH3) complexes, while Cu2+ remains isolated at the 6R plane, which is precisely the active site. However, when studying species formed on Cu-zeolites in the presence of the reaction mixture NH3/NO/O2, it appears that NH4+ ions are consumed during reaction and the formation of various intermediates including nitrite/nitrate species that decompose at T > 250 ° C to the reaction products (N2 and H2O).
We also investigated the mechanism of the SCR-NOx reaction using C3H8 as the reducing agent and Cu-zeolites of different topology with medium and large pore systems. The results show the formation of a hydrocarbon activated species in the Cu2+ which is related to the catalytic activity. Furthermore, isolated Cu2+ is an active site that is reduced to Cu+ during reaction, and then re-oxidized to Cu2+ in the presence of O2.
Finally, the hydrothermal stability of Cu-zeolites has been studied, since it is a prerequisite for its application as SCR catalysts, comparing the very hydrothermally stable Cu-SSZ-13 zeolite and the Cu-ZSM-5 which is completely disabled after hydrothermal treatment. The findings suggest the origin of the deactivation to be a change in the coordination of isolated Cu2+ in the Cu-ZSM-5 type to form CuAlOx species which are inactive in the SCR-NOx reaction. / [ES] La Reducción Catalítica Selectiva de óxidos de nitrógeno, SCR-NOx (acrónimo del inglés Selective Catalytic Reduction of NOx) es un proceso muy importante actualmente para la reducción de las emisiones de NOx en vehículos diésel, que deben ajustarse a nuevas normativas europeas más restrictivas. En la presente tesis doctoral se ha investigado el mecanismo de reacción y los centros activos en catalizadores de Cu en zeolitas (Cu-zeolitas) con distintas estructuras. Para ello se han utilizado fundamentalmente dos técnicas espectroscópicas in situ, la resonancia magnética nuclear RMN y la resonancia paramagnética electrónica EPR, que han permitido la detección de intermedios de reacción y la identificación de especies de Cu activas.
En concreto se ha estudiado la reacción SCR-NOx utilizando NH3 como reductor y catalizadores Cu-zeolitas con estructura chabazita. Los resultados obtenidos en el estudio preliminar de la interacción del catalizador con el NH3 muestran la formación de distintos complejos de Cu-NH3 con diferente estabilidad. A la temperatura de reacción (250 °C), el amoniaco forma iones NH4+ en centros ácidos Brønsted de la zeolita y complejos Cu+(NH3) estables, y el Cu2+ permanece aislado en el plano de los anillos 6R, que es precisamente el centro activo. Sin embargo, cuando se estudian las especies formadas con la mezcla de reacción NH3/NO/O2 en las Cu-zeolitas, se observa que los iones NH4+ se consumen en el transcurso de la reacción y la formación de varios intermedios incluyendo nitritos/nitratos que descomponen a T > 250 °C a los productos de reacción (N2 y H2O).
También se ha investigado el mecanismo de la reacción SCR-NOx utilizando C3H8 como reductor y Cu-zeolitas de distinta topología con tamaños de poros medio y grande. Los resultados obtenidos evidencian la formación de una especie activada del hidrocarburo en el Cu2+ que está relacionada con la actividad catalítica. Además el Cu2+ aislado es un centro activo que se reduce a Cu+ en el transcurso de la reacción, y se re-oxida posteriormente a Cu2+ en presencia de O2.
Finalmente, se ha estudiado la estabilidad hidrotermal de las zeolitas con cobre, puesto que es una condición indispensable para su aplicación como catalizadores SCR, comparando la zeolita Cu-SSZ-13 muy estable hidrotermalmente, y la Cu-ZSM-5 que se desactiva por completo tras el tratamiento hidrotermal. Los resultados obtenidos apuntan que el origen de la desactivación es el cambio en la coordinación del Cu2+ en la Cu-ZSM-5 para formar especies tipo CuAlOx inactivas en la reacción. / [CA] La reducció catalítica selectiva d'òxids de nitrogen, SCR-NOx (acrònim del anglès Selective Catalytic Reduction of NOx) és un procés molt important actualment per a la disminució de les emissions de NOx en vehicles dièsel, que deuen ajustar-se a les normatives europees més restrictives. En la present tesi doctoral s'ha investigat el mecanisme de reacció i els centres actius en catalitzadors de Cu en zeolites (Cu-zeolites) amb diferents estructures. Per a dur a terme aquesta tasca s'han utilitzat fonamentalment dos tècniques espectroscòpiques in situ, la ressonància magnètica nuclear RMN i la ressonància paramagnètica electrònica EPR, les quals han permès la detecció d'intermedis de reacció i la identificació d'espècies de Cu actives.
Concretament s'ha estudiat la reacció SCR-NOx emprant NH3 com a reductor i catalitzadors Cu-zeolita amb estructura chabacita. Els resultats obtinguts en l'estudi preliminar de la interacció del catalitzador amb NH3 mostren la formació de diversos complexes de Cu-NH3 amb diferent estabilitat. A la temperatura de reacció (250 °C), l'amoníac forma ions NH4+ en centres àcids Brønsted de la zeolita i complexes Cu+(NH3) estables, a més, el Cu2+ roman aïllat en el plànol dels anells 6R, que és precisament el centre actiu. No obstant, quan s'estudien les espècies formades amb la mescla de reacció, NH3/NO/O2 en les Cu-zeolites, s'observa que els ions NH4+ es consumeixen durant la reacció i la formació de diversos intermedis incloent nitrits/nitrats que descomponen, a T > 250 °C, als productes de la reacció (N2 y H2O).
També s'ha estudiat el mecanisme de la reacció SCR-NOx utilitzant C3H8 com a reductor i Cu-zeolites amb diferent topologia amb mides de porus mitges i grans. Els resultats obtinguts evidencien la formació d'una espècie en forma activa del hidrocarbur al Cu2+ que està relacionada amb l'activitat catalítica. A més a més, el Cu2+ aïllat és un centre actiu que és redueix amb el transcurs de la reacció, i es re-oxida posteriorment a Cu2+ en presència de O2.
Finalment, s'estudia l'estabilitat hidrotermal de les zeolites amb coure, puix que és una condició indispensable per a la seua aplicació com a catalitzadors SCR, comparant la zeolita Cu-SSZ-13 que és molt estable hidrotermalment, i Cu-ZSM-5 que es desactiva completament després del tractament hidrotermal. Els resultats obtinguts indiquen que la causa de la desactivació és el canvi en la coordinació del Cu2+ en Cu-ZSM-5 per a formar espècies tipus CuAlOx que són inactives a la reacció. / Moreno González, M. (2015). APLICACIÓN DE TÉCNICAS ESPECTROSCÓPICAS IN SITU AL ESTUDIO DE REACCIONES DE INTERÉS MEDIOAMBIENTAL: ELIMINACIÓN DE ÓXIDOS DE NITRÓGENO [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52601
|
499 |
Transient liquid phase (TLP) brazing of Mg–AZ31 and Ti–6Al–4V using Ni and Cu sandwich foilsAtieh, A.M., Khan, Tahir I. 21 February 2014 (has links)
No / Transient liquid phase (TLP) brazing of Mg–AZ31 alloy and Ti–6Al–4V alloy was performed using double Ni and Cu sandwich foils. Two configurations were tested; first, Mg–AZ31/Cu–Ni/Ti–6Al–4V and second, Mg–AZ31/Ni–Cu/Ti–6Al–4V. The effect of set-up configuration of the foils on microstructural developments, mechanical properties and mechanism of joint formation was examined. The results showed that different reaction layers formed inside the joint region depending on the configuration chosen. The formation of e phase (Mg), r (CuMg2), d (Mg2Ni) and Mg3AlNi2 was observed in both configurations. Maximum shear strength obtained was 57 MPa for Mg–AZ31/Ni–Cu/Ti–6Al–4V configuration and in both configurations, the increase in bonding time resulted in a decrease in joint strength to 13 MPa. The mechanism of joint formation includes three stages; solid state diffusion, dissolution and widening of the joint, and isothermal solidification. / The authors would like to acknowledge The German Jordanian University (GJU), and NSERC Canada for the financial support for this research.
|
500 |
Diffusion-Controlled Growth of Phases in Metal-Tin Systems Related to Microelectronics PackagingBaheti, Varun A January 2017 (has links) (PDF)
The electro–mechanical connection between under bump metallization (UBM) and solder in flip–chip bonding is achieved by the formation of brittle intermetallic compounds (IMCs) during the soldering process. These IMCs continue to grow in the solid–state during storage at room temperature and service at an elevated temperature leading to degradation of the contacts. In this thesis, the diffusion–controlled growth mechanism of the phases and the formation of the Kirkendall voids at the interface of UBM (Cu, Ni, Au, Pd, Pt) and Sn (bulk/electroplated) are studied extensively.
Based on the microstructural analysis in SEM and TEM, the presence of bifurcation of the Kirkendall marker plane, a very special phenomenon discovered recently, is found in the Cu–Sn system. The estimated diffusion coefficients at these marker planes indicate one of the reasons for the growth of the Kirkendall voids, which is one of the major reliability concerns in a microelectronic component. Systematic experiments using different purity of Cu are conducted to understand the effect of impurities on the growth of the Kirkendall voids. It is conclusively shown that increase in impurity enhances the growth of voids.
The growth rates of the interdiffusion zone are found to be comparable in the Cu–Sn and the Ni–Sn systems. EPMA and TEM analyses indicate the growth of a metastable phase in the Ni–Sn system in the low temperature range. Following, the role of Ni addition in Cu on the growth of IMCs in the Cu–Sn system is studied based on the quantitative diffusion analysis. The analysis of thermodynamic driving forces, microstructure and crystal structure of Cu6Sn5 shed light on the atomic mechanism of diffusion. It does not change the crystal structure of phases; however, the microstructural evolution, the diffusion rates of components and the growth of the Kirkendall voids are strongly influenced in the presence of Ni. Considering microstructure of the product phases in various Cu/Sn and Cu(Ni)/Sn diffusion couples, it has been observed that
(i) phases have smaller grains and nucleate repeatedly, when they grow from Cu or Cu(Ni) alloy, and (ii) the same phases have elongated grains, when they grow from another phase.
A difference in growth rate of the phases is found in bulk and electroplated diffusion couples in the Au–Sn system. The is explained in AuSn4 based on the estimated tracer diffusion coefficients, homologous temperature of the experiments, grain size distribution and crystal structure of the phase. The growth rates of the phases in the Au–Sn system are compared with the Pd–Sn and the Pt–Sn systems. Similar to the Au–Sn system, the growth rate of the interdiffusion zone is found to be parabolic in the Pd–Sn system; however, it is linear in the Pt–Sn system. Following, the effect of addition of Au, Pd and Pt in Cu is studied on growth rate of the phases. An analysis on the formation of the Kirkendall voids indicates that the addition of Pd or Pt is deleterious to the structure compared to the addition of Au. This study indicates that formation of voids is equally influenced by the presence of inorganic as well as organic impurities.
|
Page generated in 0.031 seconds