• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desarrollo de nuevos portainjertos para melón mediante el uso de estrategias y herramientas biotecnológicas

Cáceres Burbano, Andrés Eduardo 05 June 2021 (has links)
[ES] El melón (Cucumis melo L.) es una de las especies hortícolas más demandadas en el mundo, y como tal el mejoramiento vegetal tiene el desafío continuo de generar alternativas para el agricultor por medio del desarrollo de nuevas variedades que presenten, tolerancia/ resistencia a factores de estrés biótico (plagas y enfermedades) y abiótico (temperatura, humedad, suelo) y a su vez atributos de calidad apreciados por el consumidor. El mejoramiento convencional en melón por medio de cruzamientos entre líneas seleccionadas es una estrategia ampliamente utilizada, pero que presenta algunas limitaciones, como las barreras de cruzabilidad entre las variedades comerciales y el germoplasma silvestre, además de los períodos extensos de tiempo requeridos para evaluar las progenies. En este contexto, el injerto y el desarrollo de nuevos patrones están siendo adoptados a nivel mundial como estrategias alternativas de mejora en cultivos hortícolas, que permite aprovechar caracteres de interés presentes en especies no cultivadas o no comerciales sin necesidad de realizar largos y complejos planes de mejora (cruzamiento y retrocruzamiento). El uso de la diversidad intra e interespecífica como portainjertos para sandía ha dado muy buenos resultados, documentados en una amplia bibliografía científica. Sin embargo, las ventajas y beneficios del injerto presentan inconsistencias en los estudios realizados en melón. Esto se explica por los diferentes métodos de cultivos evaluados, así como por la amplia gama de variedades y tipos comerciales de melón existentes; esto exige a su vez, mayor inversión y fortalecimiento de la investigación en esta área del conocimiento. La presente Tesis Doctoral tiene por objetivo la generación de información relacionada al injerto en melón mediante la evaluación de portainjertos desarrollados en los grupos de mejora del Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), donde se ha llevado a cabo este trabajo, utilizando para ello diferentes condiciones de cultivo, y por lo tanto estrés, y utilizando dos tipos de melón muy consumidos en España y Europa como el ‘Piel de Sapo’ y el ‘Cantalupo’, además de una variedad tradicional muy apreciada por su calidad, el ‘Meló d’Or d’Ontinyent’. La recuperación de variedades tradicionales es un reto para la agricultura moderna y gracias al injerto validamos el potencial de esta técnica para producir ‘Meló d’Or d’Ontinyent’ bajo condiciones de estrés por la presencia de un hongo patógeno como Monosporascus cannonballus Pollack et Uecker en el suelo. El patrón experimental UPV-PRMc, desarrollado por el grupo de mejora de cucurbitáceas del COMAV de la Universidad Politécnica de Valencia, mediante la hibridación de un melón tipo ‘Piel de Sapo’ y una accesión de un melón silvestre del tipo agrestis, mostró su capacidad para proporcionar resistencia y vigor a la variedad tradicional, que sin el uso de un portainjerto resistente sería incapaz de culminar su ciclo de cultivo bajo estas condiciones. Ensayos de campo complementarios permitieron evaluar el comportamiento de diferentes portainjertos experimentales y comerciales de Cucurbita y Cucumis, en condiciones de estrés bajo sistemas de producción convencional en campo abierto. Con relación al vigor y al desarrollo de las plantas injertadas, los patrones de Cucurbita mostraron un retraso en el vigor temprano del cultivo y tanto Ma x Mo EF como Pe x Pe ZS tuvieron los más bajos rendimientos. Destaca el uso del híbrido Ma x Ec como una buena alternativa a los híbridos comerciales normalmente utilizados entre C. maxima x C. moschata. Por su parte los portainjertos de C. melo mostraron una mejor afinidad y mayor vigor consistentemente a lo largo de los 3 años de estudio, al igual que los híbridos interespecíficos Fi x My y Fi x An. Adicionalmente al estudio de la compatibilidad entre el melón Piel de Sapo y los diferentes patrones experimentales y comerciales, también se abordó el impacto sobre la calidad del fruto. Este aspecto es quizá el más controvertido en relación al injerto por el uso de patrones filogenéticamente distantes que pueden pertenecer a otra especie o género distinto al melón. Nuestros datos reflejaron que los patrones de Cucurbita tuvieron efecto sobre la forma del fruto y la cavidad seminal, mientras que los patrones de Cucumis melo presentaron un menor impacto sobre los parámetros de calidad del fruto. También es importante destacar que los patrones de especies silvestres o no cultivadas de Cucumis no afectaron significativamente la calidad, a pesar de que C. metuliferus E. Meyer ex Naudin mostró signos de colapso en el segundo año de evaluación y consistentemente produjo los frutos más pequeños en comparación a las plantas sin injertar. El estudio complementario sobre el perfil metabólico y aromático de los frutos ha permitido ampliar los criterios de selección de portainjertos de melón. Se observó la variación en el contenido de ácidos y azúcares principalmente debido al grado de maduración y en menor medida a una combinación de patrón-variedad específica. La modificación del perfil de compuestos volátiles mostró un efecto claro de los portainjertos de Cucurbita sobre la variedad de melón, con el incremento de compuestos aromáticos relacionados a la calabaza y la reducción de otros compuestos claves en el aroma del melón Piel de Sapo. Con la perspectiva de aprovechar el germoplasma silvestre como portainjerto, en el Capítulo 2 de la presente tesis doctoral, presentamos los estudios enfocados en la caracterización de especies silvestres o no cultivadas del género Cucumis, que son una fuente de resistencias a patógenos y enfermedades de importancia económica como nematodos, oído o Fusarium, y que están ausentes en las variedades comerciales de melón. La estandarización de metodologías para optimizar la germinación de accesiones de Cucumis silvestres ha sido un primer paso para maximizar el rendimiento de la semilla como material de partida, ya que la dormancia presente en el germoplasma no cultivado suele ser un factor limitante. Basados en los estudios preliminares de campo en los que se observó la diferencia de vigor entre una accesión de C. metuliferus y el melón ‘Piel de Sapo’, se estudió si los híbridos interespecíficos desarrollados por el grupo de mejora suponían una opción para el incremento del vigor y la combinación de características deseables en una misma planta capaz de soportar el injerto de una variedad comercial de melón. Las barreas de incompatibilidad, impidien los cruzamientos viables con C. metuliferus (filogenéticamente separado del resto de Cucumis africanos) pero los híbridos interespecíficos de los cruzamientos entre Cucumis ficifolius A. Rich. x Cucumis anguria L. y Cucumis ficifolius x Cucumis myriocarpus Naudin son viables. Estos materiales F1, mostraron un mayor vigor, un incremento en el diámetro de su hipocótilo y una buena compatibilidad con melones de tipo ‘Cantalupo’ y ‘Piel de Sapo’, bajo condiciones de invernadero y a campo abierto. Un alto grado de resistencia a Fusarium oxysporum f. sp. melonis como resultado de la combinación de sus genomas parentales, así como una buena tolerancia al estrés osmótico bajo condiciones in vitro, destacan como características deseables en estos dos híbridos interespecíficos. Utilizando especies silvestres e híbridos de Cucumis, se evaluaron distintas metodologías para la obtención de poliploides, con el objetivo de potenciar el vigor de las plántulas (tamaño y diámetro del hipocótilo) y estudiar los efectos de la poliploidización. La colchicina fue el compuesto antimitótico más efectivo aplicado sobre semillas pregerminadas de dos híbridos interespecíficos de Cucumis. En líneas homocigóticas de C. anguria, C. ficifolius, C. myriocarpus, o C. metuliferus, la duplicación del genoma no fue estable en ningún caso. La evaluación del nivel de ploidía confirmó que los alopoliploides obtenidos fueron hexaploides (6n=72). Los nuevos materiales obtenidos, son alopoliploides sintéticos que resultaron de la duplicación de un genoma híbrido. A diferencia de sus antecesores triploides, los alopoliploides mostraron la recuperación de su fertilidad, asociado posiblemente a la presencia de SNPs concretos relacionados a genes que codifican procesos reproductivos. La mejora de características de interés en especies silvestres (mayor diámetro de los hipocótilos) ha sido posible por medio de la poliploidización, lo que favorece el procedimiento de realización del injerto y la producción de la planta injertada. Los resultados presentados en esta tesis doctoral han sido posibles gracias a la colaboración de grupos de investigación interdisciplinarios de la Universidad Politécnica de Valencia, la Universidad Jaime I de Castellón y la Politécnica de Cataluña, en el marco del proyecto AGL2014-53398-C2-2-R APROXIMACIONES BIOTECNOLOGICAS Y CULTURALES PARA LA MEJORA DE LAS RESISTENCIAS Y EL CONTROL DE ENFERMEDADES EN MELON Y SANDIA y con apoyo de los proyectos AGL2017- 85563-C2-1-R de FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación, y proyecto para Grupos de Excelencia PROMETEO 2017/078 además del apoyo de la SECRETARIA DE EDUCACIÓN SUPERIOR, CIENCIA, TECNOLOGÍA E INNOVACIÓN (SENECYT-ECUADOR) que por medio del Instituto de Fomento al Talento Humano (IFTH), proporcionó una beca de estudio al doctorando. / [EN] The melon (Cucumis melo L.) is one of the most demanded horticultural species in the world and as such, plant improvement has the constant challenge of thinking up alternatives for the farmer through the development of new varieties with tolerance / resistance to biotic (pests and diseases) and abiotic (temperature, humidity, soil) stress factors and quality attributes appreciated by the consumer. Conventional breeding in melon through crossings between selected lines is a widely used strategy, but it has some limitations, such as cross barriers between commercial varieties and wild germplasm, in addition to the extended periods of time required to evaluate the progeny. In this context, grafting and the development of new rootstocks are being adopted worldwide as alternative breeding strategies in horticultural crops, which allows to take advantage of relevant characteristics present in non-cultivated or non-commercial species without extensive and complex breeding programs (crossing and backcrossing). Development of rootstocks for watermelon crop derived from intra and interspecific diversity have been successful and well documented in a wide scientific bibliography. However, advantages and benefits from grafting show inconsistent data in melon assays. These results can be explained since different cultivation methods have been evaluated and because of the large number of commercial varieties of melon; this fact motivates a higher investment and strengthening of research in this area of knowledge. The present Doctoral Thesis has as objective the generation of information related with melon grafting, through the development, characterization and study under stress conditions of novel rootstocks used for two commercial cultivars consumed in Spain and Europe, like ‘Piel de Sapo’ and ‘Cantaloupe’, besides a traditional variety as the ‘Meló d’Or d’Ontinyent’. Recovery of traditional cultivars is a challenge for modern agriculture and thanks to grafting we have validated the potential of this technique to crop ‘Meló d’Or d’Ontinyent’ in soil stressed by Monosporascus cannonballus Pollack et Uecker. The experimental rootstock UPV-PRMc, developed by Institute for the Preservation and Improvement of Valencian Agro-diversity (COMAV) of the Polytechnic University of Valencia, from an hybridization between one ‘Piel de Sapo’ melon and one accession of wild agrestis melon, provided resistance and vigor to the traditional variety, which is not able to complete the crop cycle without be grafted onto a resistant rootstock. Complementary field trials allowed to test the behavior of experimental and commercial rootstocks of Cucurbita and Cucumis under stress conditions in conventional production systems. Regarding vigor and growth of grafted plants, Cucurbita rootstocks showed a delay in early vigor of plants and Ma x Mo EF and Pe x Pe ZS had the lowest yields. The Ma x Ec hybrid highlights as a good alternative to the C. maxima x C. moschata hybrids, commonly used in commercial grafting. On the other hand, C. melo rootstocks showed better affinity and higher vigor consistently along these 3 years, as well as the interspecific hybrids Fi x My and Fi x An. Additionally to the compatibility behavior between ‘Piel de Sapo’ melon and different experimental and commercial rootstocks, also the impact on fruit quality was studied. This issue is one of the most controversial about grafting because of the use of rootstocks phylogenetically distant that belong to other species or genera than melon. Our data showed an effect over shape and size of seed cavity when using Cucurbita rootstocks, while Cucumis melo ones showed a lower impact on fruit quality traits. It is important to note that rootstocks derived from wild or non-cultivated Cucumis species did not alter significantly the quality, despite of that C. metuliferus E. Meyer ex Naudin showed vine decline symptoms in the second year and consistently the smallest fruits compared to non-grafted plants. The complementary analysis of the aromatic and metabolic profile from fruits have allowed to increase the selection criteria for melon rootstocks. Variation in acids and sugars was observed mainly due to maturation degree and to a lesser extent to a specific rootstock-scion combination. The modification in volatile compounds levels displayed an effect of the Cucurbita rootstocks on melon cultivar, increasing aromatic compounds related to pumpkin and decreasing other key compounds in ‘Piel de Sapo’ aroma melon. With the prospect to take advantage from wild germplasm to develop new rootstocks, in the Chapter 2 in this Doctoral Thesis, we showed the studies focused on the characterization of wild or non-cultivated species in the Cucumis genus, which are a resistance resource against pathogens and diseases of economic importance like nematodes, powdery mildew or Fusarium, and that are absent in commercial melon. The standardization of methodologies to optimize the germination of wild Cucumis accessions has been the first step to maximize the seed yield as a started material, since the dormancy in non-cultivated germplasm is usually a limiting factor. Based on preliminary field studies, where the differences in vigor between C. metuliferus and ‘Piel de Sapo’ melon were observed, the development of interspecific hybrids was approached as an option to increase the vigor and combine characteristics of interest in one same plant able to bear the grafting with a commercial variety of melon. The incompatibility barriers prevented viable crosses with C. metuliferus (phylogenetically distant of the rest of African Cucumis), although two interspecific hybrids were viable from crosses between Cucumis ficifolius A. Rich. x Cucumis anguria L. and Cucumis ficifolius x Cucumis myriocarpus Naudin. These F1 plants had higher vigor, hypocotyl diameter and good compatibility with ‘Cantaloupe’ and ‘Piel de Sapo’ melons under field and greenhouse conditions. High level of resistance to Fusarium oxysporum f. sp. melonis as result of the combination of their parental genomes, as well as a good tolerance to osmotic stress under in vitro conditions, highlight as desirable characteristics in these two new interspecific hybrids. With the preliminary results on the improvement of traits in wild Cucumis germplasm from the hybridization, some methodologies were evaluated to obtain polyploids, in order to enhance the desirable features in these hybrids (vigor, hypocotyl size and diameter). Colchicine was the most effective antimitotic agent applied over pregerminated seeds of two Cucumis interspecific hybrids. In homozygous lines of C. anguria, C. ficifolius, C. myriocarpus, or C. metuliferus, genome duplication was not stable. The polyploidy level confirmed that allopolyploids obtained were hexaploids (6n=72). The novel materials obtained are synthetic allopolyploids that result from the duplication of a hybrid genome. Unlike their triploid ancestors, allopolyploids showed the recovery of their fertility, possibly associated with the presence of specific SNPs related to genes that encode reproductive processes. The improvement of characteristics of interest in wild species has been possible through polyploidization, which favors the development of new improved materials capable of adapting to the grafting process. The results presented in this Doctoral Thesis have been possible thanks to the collaboration of interdisciplinary research groups from Polytechnic University of Valencia, Jaime I University of Castellón and Polytechnic University of Catalonia, within the framework of the AGL2014-53398-C2-2 project. -R BIOTECHNOLOGICAL AND CULTURAL APPROACHES FOR THE IMPROVEMENT OF RESISTANCES AND THE CONTROL OF DISEASES IN MELON AND WATERMELON and with the support of the projects AGL2017-85563-C2-1-R of FEDER / Ministry of Science, Innovation and Universities-State Agency of Research and project for Groups of Excellence PROMETEO 2017/078, in addition to the support of the SECRETARIA DE EDUCACIÓN SUPERIOR, CIENCIA, TECNOLOGÍA E INNOVACIÓN (SENECYT-ECUADOR) which through the Institute for the Promotion of Human Talent (IFTH), provided a scholarship for the doctoral candidate. / [CA] El meló (Cucumis melo L.) és una de les especies hortícoles més demandades en el món, i consegüentment el millorament vegetal té el desafiament continu de generar alternatives per a l’agricultor per mitjà del desenvolupament de noves varietats que presenten, tolerància/resistència a factors d’estrès biòtic (plagues i malalties) i abiòtic (temperatura, humitat, sòl) i al seu torn atributs de qualitat apreciats pel consumidor. El millorament convencional en meló mitjançant creuaments entre línies seleccionades és una estratègia àmpliament utilitzada, però que presenta algunes limitacions, com la impossibilitat de creuar-se d’algunes varietats comercials i determinat germoplasma silvestre d’interès, a més dels períodes extensos de temps requerits per a avaluar les progènies. En aquest context, l’empelt i el desenvolupament de nous patrons estan sent adoptats a nivell mundial com a estratègies alternatives de millora en cultius hortícoles. L’empelt permet aprofitar caràcters d’interès presents en espècies no cultivades o no comercials sense necessitat de realitzar llargs i complexos plans de millora (creuament i retrocruzamiento). L’ús de la diversitat intra i interespecífica com a portaempelts de meló d’Alger ha donat molt bons resultats, documentats en una àmplia bibliografia científica. No obstant això, els avantatges i beneficis de l’empelt presenten inconsistències en els estudis realitzats en meló. Això s’explica pels diferents mètodes de cultius avaluats, així com per l’àmplia gamma de varietats i tipus comercials de meló existents; això exigeix al seu torn, major inversió i enfortiment de la investigació en aquesta àrea del coneixement. La present Tesi Doctoral té per objectiu la generació d’informació relacionada amb l’empelt en meló, mitjançant l’avaluació de nous portaempelts que s’han obtingut en els grups de millora del COMAV (Instituto de Conservación y Mejora de la Agrodiversidad Valenciana) on s’ha dut a terme aquest treballs fent servir diferents condicions de cultiu i per tant de estressos i dos tipus de meló molt consumits a Espanya i Europa com el ‘Piel de Sapo’ i el ‘Cantalupo’ a més d’una varietat tradicional reconeguda per la seua excel·lent qualitat, el ‘Meló d’Or d’Ontinyent’. La recuperació de varietats tradicionals és un repte per a l’agricultura moderna i mijançant l’empelt validem el potencial d’aquesta tècnica per a produir ‘Meló d’Or d’Ontinyent’ sota condicions d’estrès degudes a la presència en la terra d’un fong patogen com es el Monosporascus cannonballus Pollack et Uecker. El patró experimental UPV-PRMc, desenvolupat pel grup de millora de cucurbitàcies del COMAV, mitjançant la hibridació d’un meló tipus ‘Piel de Sapo’ i una accessió d’un meló silvestre del tipus agrestis, va mostrar la seua capacitat per a proporcionar resistència i vigor a la varietat tradicional, que sense l’ús d’un portaempelt resistent no completaria el cicle de cultiu sota aquestes condicions. Assajos de camp complementaris van permetre avaluar el comportament de diferents portaempelts experimentals i comercials de Cucurbita i Cucumis, en condicions d’estrès en sistemes de producció convencional a camp obert. En relació amb el vigor i al desenvolupament de les plantes empeltades, els patrons de Cucurbita van mostrar un retard en el vigor a l’inici del cultiu i tant Ma x Mo EF com Pe x Pe ZS van tindre els rendiments més baixos. Destaca l’ús de l’híbrid Ma x Ec com una bona alternativa als híbrids comercials normalment utilitzats que deriven de creuaments C. maxima x C. moschata. Per la seua part els portaempelts de C. melo van mostrar una millor afinitat i major vigor consistentment al llarg dels 3 anys d’estudi, igual que els híbrids interespecífics Fi x My i Fi x An. Addicionalment a l’estudi de la compatibilitat entre el meló ‘Piel de Sapo’ i els diferents patrons experimentals i comercials, també es va estudiar l’impacte sobre la qualitat del fruits. Aquest aspecte és potser el que més controvèrsia crea al voltant de l’ús de l’emplet on s’utilitzen portampelts filogenèticament distants que poden pertànyer a una altra espècie o gènere diferent al meló. Les nostres dades van reflectir que els patrons de Cucurbita van tindre efecte sobre la forma del fruit i la cavitat seminal, mentre que els patrons de Cucumis melo van presentar un menor impacte sobre els paràmetres de qualitat del fruit. També és important destacar que els patrons d’espècies silvestres o no cultivades de Cucumis no van afectar significativament la qualitat, a pesar que C. metuliferus E. Meyer ex Naudin va mostrar signes de col·lapse en el segon any d’avaluació i consistentment va produir els fruits més xicotets en comparació a les plantes sense empeltar. L’estudi complementari sobre el perfil metabòlic i aromàtic dels fruits ha permès ampliar els criteris de selecció de portaempelts de meló. Es va observar la variació en el contingut d’àcids i sucres principalment com a consequència del grau de maduració i en menor mesura a una combinació de patró-varietat específica. La modificació del perfil de compostos volàtils va mostrar un efecte clar dels portaempelts de Cucurbita sobre la varietat de meló, amb l’increment de compostos aromàtics relacionats amb la carabassa i la reducció d’altres compostos claus en l’aroma del meló tipus ‘Piel de Sapo’. Amb la perspectiva d’aprofitar el germoplasma silvestre per al desenvolupament de nous portaempelts, al Capítol 2 de la present tesi doctoral, presentem els estudis enfocats a la caracterització d’espècies silvestres o no cultivades del gènere Cucumis, que són una font de resistències a patògens i malalties d’importància econòmica com a nematodes, oïdi o Fusarium, i que no tenen en les varietats comercials de meló. L’estandardització de metodologies per a optimitzar la germinació d’accessions de Cucumis silvestres ha sigut un primer pas per a maximitzar el rendiment de la llavor com a material de partida, ja que la dormancia present en el germoplasma no cultivat sol ser un factor limitant. Basats en els estudis preliminars de camp en els quals es va observar la diferència de vigor entre una accessió de C. metuliferus i el meló ‘Piel de Sapo’, es van avaluar els híbrids interespecífics desenvolupats als grups de millora com una opció per incrementar el vigor i combinar característiques desitjables en una mateixa planta que a l’hora fora capaç de suportar l’empelt d’una varietat comercial de meló. Les barreas d’incompatibilitat, no fan posible la hibridació amb C. metuliferus (filogenèticament separat de la resta de Cucumis Africans) però els híbrids interespecífics viables dels creuaments entre Cucumis ficifolius A. Rich. x Cucumis anguria L. i Cucumis ficifolius x Cucumis myriocarpus Naudin són viables. Aquests materials F1, van mostrar un major vigor, un increment en el diàmetre del seu hipocòtil i una bona compatibilitat amb melons de tipus ‘Cantalupo’ i ‘Piel de Sapo’, en condicions d’hivernacle i a camp obert. També aquests materials han mostrat un alt grau de resistència a Fusarium oxysporum f. sp. melonis i una bona tolerància a l’estrès osmòtic (avaluada en condicions de cultiu in vitro), característiques desitjables en aquestos dos nous híbrids interespecífics. Partint del germoplasma de Cucumis silvestre i els híbrids obtinguts, es va avaluar diferents metodologies per a l’obtenció de poliploides, amb l’objectiu de potenciar el vigor de les plàntules (grandària i diàmetre dels hipocòtil) i estudiar els efectes de la poliploidització. La colxicina va ser el compost antimitòtic més efectiu al aplicar-lo a llavors pregerminadas dels dos híbrids interespecífics de Cucumis. En línies homozigòtiques de C. anguria, C. ficifolius, C. myriocarpus, o C. metuliferus, la duplicació del genoma no va ser estable en cap cas. L’avaluació del nivell de ploidía va confirmar que els al·lopoliploides obtinguts van ser hexaploids (6n=72). Els nous materials obtinguts, són al·lopoliploides sintètics que van resultar de la duplicació d’un genoma híbrid. A diferència dels seus antecessors triploides, els al·lopoliploides van mostrar la recuperació de la seua fertilitat, associat possiblement a la presència de SNPs concrets relacionats a gens que codifiquen processos reproductius. La millora de les característiques d’interès (major diàmetre dels hipocòtils) ha sigut possible mitjançant l’obtenció de poliploides, la qual cosa facilita el procediment per a dur a terme l’empelt i per tant la producció de planta empeltada. Els resultats presentats en aquesta Tesi Doctoral han sigut possibles gràcies a la col·laboració de grups d’investigació interdisciplinaris de la Universitat Politècnica de València, la Universitat Jaume I de Castelló i la Politècnica de Catalunya, en el marc del projecte AGL2014-53398-C2-2-R APROXIMACIONS BIOTECNOLOGICAS Y CULTURALES PARA LA MEJORA DE LAS RESISTENCIAS Y EL CONTROL DE ENFERMEDADES EN MELON Y SANDIA i amb suport dels projectes AGL2017- 85563-C2-1-R de FEDER/Ministeri de Ciència, Innovació i Universitats–Agència Estatal d’Investigació, i projecte per a Grups d’Excel·lència PROMETEO 2017/078 a més del suport de la SECRETARIA DE EDUCACIÓN SUPERIOR, CIENCIA, TECNOLOGIA E INNOVACIÓN (SENECYT-L’Equador) que per mitjà del ‘Instituto de Fomento del Talento Humano’ (IFTH), va proporcionar una beca d’estudi al doctorand. / Finalmente agradecer a mi país Ecuador y a la Secretaria De Educación Superior, Ciencia, Tecnología e Innovación (SENECYT) y al Instituto Nacional De Fomento Al Talento Humano (IFTH) que me apoyaron con una beca de estudios para realizar mi tesis Doctoral, con la que espero aportar además de conocimiento científico, alternativas y soluciones para la realidad agrícola del país. / Cáceres Burbano, AE. (2020). Desarrollo de nuevos portainjertos para melón mediante el uso de estrategias y herramientas biotecnológicas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147863 / TESIS
2

Investigating the performance of quality of the Cucumis metuliferus E. May. Ex Naudin (African hornes cucumber) under different growing environments for potential commercialisation

Maluleke, Mdungazi Knox 07 1900 (has links)
Text in English with abstracts in English, Tsonga and Sepedi and keywords in English / This study was carried out to investigate the performance and quality of Cucumis metuliferus E. Mey. Ex Naudin (African horned cucumber) under protected and open environment with the aim of comparing yield and quality for the purpose of commercialisation of the crop. Therefore, the overall objective was to determine a suitable growing environment for C. metuliferus between greenhouse, shade net and open field, so that a comparative yield and quality analysis could be done for the purpose of commercialisation of the crop. Cucumis metuliferus seeds are difficult to germinate under the normal suitable environmental conditions in which most farmers operate. Germination was evaluated with respect to growth medium, scarification and seed certification. These factors ultimately control yield and fruit quality. The main aim of the study was to investigate the effect or impact of seed certification, growth medium (sand and vermiculite, peat TS1 and seedling mix) and scarification on germination success of C. metuliferus seeds. The seeds were classified under four different categories viz. treated certified, non-treated certified, treated uncertified, and non-treated uncertified. Of the 540 certified and uncertified seeds sown in the three-growth media, 80% germinated, significantly more that those that failed. The treatment combination of treated certified seeds (TC) and peat demonstrated high germination success rate of 93.6%, followed by the treatment combination of treated certified seeds (TC) and sand+ vermiculite with germination success rate of 91.3%. The treatment combination of uncertified untreated (UTU) seeds and potting mix illustrated low germination success rate at 37.2%. In general, the study results revealed that certified seeds scarified with warm water combined had a higher germination rate that unscarified seeds, irrespective of the growth media. Since the seedling root-ball integrity is essential for transplant survival, this study suggests peat and certified seeds as the best combination for propagation and good quality plants. Water scarcity, population growth and climate change are the major factors affecting agricultural productivity in the 20th century. Cucumis metuliferus grows naturally in the wild; however, its yield response to water stress, different cultivation environment and soil types, has not been assessed. A study was carried out to determine water use efficiency of the C. metuliferus grown the greenhouse, shade net and open field under varying soil types and irrigation water levels, so that a comparative analysis could be done on productivity levels. The research was conducted at the University of South Africa (Unisa) Science Campus, in Florida, Gauteng (-26.157831 S, 27.903364 E) during the 2017/2018 and 2018/2019 growing seasons. A factorial experiment with two factors – soil (loamy soil and sandy loam soil) and water stress levels (no water stress, moderate water stress and severe water stress). The pot experiments were a completely randomised design with nine (9) replicates per treatment. Data collected included total biomass, aboveground biomass, harvest index and water use efficiency. Results illustrated that treatment of moderate water stress combined with loamy soil and shade net decreased WUE from 6.2 to 1.4 kg m-3, whereas treatment combination of no water stress combined with sandy loam and open field environment demonstrated increase in WUE from 1.4 to 6.2 kg m-3. Nutritional concentration of most crops depends on factors such as amount of water, growing environment, light intensity and soil types. However, factors influencing nutritional concentration of C. metuliferus fruits is not yet known. Another objective of the study was to determine the effect of different water stress levels, soil types and growing environment (greenhouse, shade net and open field) on the concentration of nutrients in C. metuliferus fruit. Freeze-dried fruit samples were used in the quantification of ꞵ-carotene, vitamin C, vitamin E, total soluble sugars, crude proteins, total flavonoids, total phenols, macro-nutrients (Ca, Mg, P, K, Na and S), and micro-nutrients (Cu, Fe, Mn and Zn). Results demonstrated that plants grown under shade net, combined with severe water stress level and loamy soil, had increased total soluble sugars (15.8 ˚Brix) compared to other treatments. Plants under shade net environment, combined with moderate water level and loamy soil, resulted in increased crude protein content (6.31 ˚Brix). The severe water stress treatment combined with loamy soil under greenhouse conditions resulted in increased ꞵ-carotene content (1.65 mg 100 g-1 DW) when compared to other treatments. Regarding vitamin C, the treatment of no water stress combined with loamy soil under shade net environment showed higher content of (33.1 mg 100 g-1 DW). The severe water stress treatment combined with sandy loam soil under greenhouse environment, increased vitamin E content (35.1 mg 100 g-1 DW) when compared to other treatments. The treatment of open field under severe water stress level and loamy soil increased total flavonoids content (0.85 mg CE/g-1 DW) in the fruit when compared to other treatments. The results thus imply that this plant bears better-quality fruit in terms of concentration of nutrients and biochemical constituents when grown under no to moderate water stress treatment on the loamy or sandy loam substrate in the shade net and open field environment. Primary metabolites are biological compounds that are essential to the growth and development of a plant during its life cycle. They have a direct impact on the yield and biochemical constituents in plants. Quantities of the primary metabolites were determined using the LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) from fruits harvested from treatments mentioned above. The results showed that the no water stress treatment combined with sandy loam under shade net environment significantly (P≤0.05) increased asparagine content from 10×106 to 80x106 peak intensity when compared to other treatments. The severe water stress treatment combined with sandy loam soil under open field environment during the 2017/2018 season, significantly increased dopa content from 12,030 to 324,240 peak intensity, while during the 2018/2019 season, 4-hydroxyproline from 10×106 to 90x106 peak intensity the was significantly increased. The study suggests that the treatment combination of water stress levels (no water stress and severe water stress) and soil substrates (loamy soil and sandy loam) under greenhouse and shade net significantly affected the shift of primary metabolites profile of C. metuliferus fruit as opposed to individual factors, respectively. There is therefore great potential to commercialise this crop; however, there is still a great deal that is not well understood of its growth habits and biological/biochemical constituents as a future alternative crop. / Ndzavisiso lowu wu endliwe ku lavisisa hi matirhelo na khwaliti ya Cucumis metuliferus E. Mey. Ex Naudin (African horned cucumber) eka mimbangu na mavala lama sirheleriweke na hi xikongomelo xa ku kotlanisa ntshovelo na vuxopaxopi bya khwaliti hi xikongomelo xa ku endla minxaviso ya ximila. Xikongomelonkulu xa ku vona ku faneleka ku kula ka C. metuliferus exikarhi ka ti-greenhouse, nete ya ndzhuti na mimbangu ya le rivaleni ku endlela ku pfuneta nxopaxopo. Timbewu ta C. metuliferus ta nonon'hwa ku tihlukisa ehansi ka swiyimo swa mbangu leswi faneleke laha varimi va tirhaku eka tona. Ku hlukisa swi kamberiwe hi ku langutana na midiyamu ya ku kula, skarifikhexini na switifiketi swa timbewu. Swilo leswi swi lawula ntshovelo na khwaliti ya muhandzu. Xikongomelonkulu xa ndzavisiso lowu a ku ri ku lavisa hi vuyelo bya ku nyikiwa ka switifiketi, midiyamu ya ku kula (sand + vermiculite, peat TS1 and seedling mix) na skarifikhexini eka ku humelela ku hlukisa timbewu ta C. metuliferus E. Mey. ex naudin. Timbewu ti klasifayiwile ehansi ka tikhathegori ta mune to hambana, ku nga, treated certified, non-treated certified, treated uncertified, na non-treated uncertified.Hi vunharhu ka timediya leti ti ve na nhlukiso wa xiyenge hi 80%. Vuyelo byi kombise leswo treated certified na non-treated certified ti ve na ku humelela ka le henhla ka nhlukiso hi 93.6% na 91.3% hi ku landzelelana. Vuhumeleri bya nhlukiso wa le hansi ku ve timbewu ta treated uncertified hi vuyelo bya 37%. Vulehi bya 12 cm byi voniwe eka certified seedlings tanihi bya le henhla swinene. Swimilani swa unscarified na swa uncertified swi ve na timbewu ta le hansi, ta vulehi bya 3.44 cm eka vhiki ra vumune. Hikokwalaho, seed certification swi ve na vuyelo ngopfu ku tlula scarification hi majini ya le henhla swinene. Ku khomaniseka ka ximila eka bolo ya misava i swa nkoka eka ku pona no ya emahlweni ka ximila loko xi transplantiwa, kasi ndzavisiso lowu wu tlakusa leswo ku va na peat na timbewu leti nga na switifiketi tanihi ndlela yo antswa swinene ya ku kurisa swimila na ku va na swimila swa khwaliti. Ku pfumaleka ka mati, nkulo wa swilo hinkwaswo na ku cinca ka tlayimete i swa nkoka leswi khumbaka ku tirheka ka vurimi eka malembexidzana ya 20. Cucumis metuliferus yi kula hi ntumbuluko enhoveni; kambe ntshovelo wa yona wu angula eka ku kala ka mati, tindhawu to hambana ta ku rimiwa na mixaka ya misava, a swi si kamberiwa. Ku endliwe ndzavisiso ku vona ku faneleka ka mafambiselo ya ku kurisa ximila eka greenhouse, nete ya ndzhuti eka swiyimo swa mavala lama pfulekeke, leswo nxopaxopo wu ta kotlanisiwa eka tilevhele ta vuyelo bya ntshovelo loku nga endliwaka. Ndzavisiso wu endliwe eka greenhouse, nete ya ndzhuti na swiyimo swa mavala lama pfulekeke eKhempasi ya Sayense eUniversity of South Africa (Unisa) eFlorida, eGauteng (26.157831 S, 27.903364 E) hi nkarhi wa 2017/2018 na 2018/2019 hi tisizini ta ku byala. Ekspirimente leyi nga na swilo swimbirhi – ku nga misava ya loamy na misava ya misava ya sava ya loam) na levhele ya ncheleto wa mati (laha ku nga ri ku na mati kahle, laha ku nga na matinyana na laha ku kalaka mati). Xipirimente xa le mapotweni xi endliwe hi ndlela yo ka yi nga kunguhatiwangi hi ku tirhisa ku phindaphinda ka nkaye (9), na dizayini ya kona leyi nga kombisiwa laha henhla. Tipharamita ta ku pimiwa ti katsa chlorophyll content, stomatal conductance na xiyenge xa ntshovelo, xo fana na ku tirhisa mati, vuheleri bya biomass, biomass ehenhla ka bayomasi ya misava, indeksi ya ntshovelo, vulehi bya muhandzu, nhlayo ya mihandzu, na ku tirhisiwa ka mati hi ndlela yo hlayisa. Vuyelo byi kombise leswo tirhelo ra mavala lama pfulekeke swi pfanganisiwa na ndhawu yo kala mati na misava ya sava ya loam, swi ngetela nhlayo ya mihandzu. Ku tirhiwa ka swiyimo swa mavala lama nga pfuleka, swi hlanganisiwa na ndhawu yo kalanyana mati na misava ya sava ya loam, swi kombise ku tirhisiwa kahle ka mati ka le henhla hi (6. 2 kg m-3) loko swi kotlanisiwa na ku tirhiwa ku n'wana. I swa nkoka ku lemuka leswaku a ku va ngi na ku hambana ku kulu exikarhi ka misava ya sava ya loam na misava ya loam eka ntirhiso wa mati lowu ku nga water use efficiency (WUE). Kambe, misava ya sava ya loam yi kombise xiyenge xa le henhla xa WUE loko swi kotlangisiwa na misava ya loam. Hikokwalaho ku nga fikeleriwa eka mhaka ya leswo ku pfanganisa ku tirhana na mavala yo pfuleka, tilevhele ta ncheleto wa mati (kahle na le xikarhi) na misava ya sava ya loam swa bumabumeriwa eka varimi leswo ku ta fikelekeleriwa xiyenge xa le henhla xa WUE na ku humelela ka ntshovelo wa C. metuliferus. Ku hlengeletana ka tinutriyente eka ndhawu yin'we (nutritional concentration) ka swimila swi titshege hi swilo swo fana na leswi kumekaka eka mati, mbangu wa ku kula, masana ya dyambu na mixaka ya misava. Kambe, swilo swo fana na ku hlengeletana ka tinutriyente ta mihandu ya C. metuliferus a swi si tiveka. Xikongomelo xa ndzhavisiso a ku ri ku vona vuyelo bya tilevhele to hambana ta ku kala ka mati (ku pfumaleka ka mati, ku pfumalekanyana, na ku pfumaleka swinene ka mati), mixaka ya misava (misava ya loam na misava ya sava) mbangu wa ku kula (greenhouse, nete ya ndzhuti na mavala yo pfuleka) hi ku pfangana na tinutriyente eka mihandzu ya C. metuliferus E. Mey. ex naudin. Tisampuli ta mihandzu leyi nga omisiwa yi friziwa ti tirhisiwe eka ku endla vunyingi bya ꞵ-carotene, Vhitamini C, Vhitamini E, na total soluble sugars, ti-crude protein na ti-total flavonoids, total phenols, na micro-nutrients (Cu, Fe, Mn na Zn). Vuyelo bya ndzavisiso byi kombise leswo swimila leswi nga kurisiwa eka nete ya ndzhuti, swi pfanganisiwa na levhele ya nkalo wa mati swinene na misava ya loam, swi ngetele ti-soluble sugars hi (15.8 ˚Brix) loko ku kotlanisiwa na ku tirhiwa kun'wana. Swimila leswi nga hansi ka mbangu wa nete ya ndzhuti, swi pfanganisiwa na nkayivelonyana wa mati hi vuxikarhi na misava ya loam, swi ve na vuyelo bya ku ngetela crude protein content hi (6.31˚Brix). Ku tirhiwa ka nkayivelo wa mati swinene swi pfanganisiwa na misava ya loam ehansi ka swiyimo swa greenhouse swi ngetelele ꞵ-carotene content (1.65 mg/100 g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhiwa ka ku kayivela ka mati swi pfanganisiwa na misava ya loam ehansi ka mbangu wa nete ya ndzhuti swi kombise ku ngeteleleka ka vhitamini C hi (33.1 mg 100 g-1 DW). Ku tirhiwa ka nkayivelo wa mati swinene swi pfanganisiwa na misava ya loam ehansi ka swiyimo swa mbangu wa greenhouse swi ngetelele vhitamin E hi (35.1 mg 100 g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhiwa ka mavala lama nga rivaleni eha CE g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivela mati ka levhela ya le xikarhi na misava ya sava ya loam ehansi ka mbangu wa nete ya ndzhuti swi kombise ku ngeteleleka ka Zn content (12.7 μg g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Vuyelo byi kombisa leswaku ximila lexi xi na mihandzu ya khwaliti yo antswa hi ku landza ku hlengeletana ka tinutriyeente na tikhonstituwenti ta bayokhemikali, loko xi kurisiwa ehansi na ku ka ku nga ri na nkayivela mati kumbe ku kayivelanyana ka mati, hi ku tirhisa misava ya loam kumbe misava ya sava eka nete ya ndzhuti na le ka mavala ya le rivaleni.Ti-primary betabolites ti tlhela titiviwa tanihi biological compounds leti ti faneleke eka ku kula na ku hluvuka ka ximila hi nkarhi wa vutomi bya xona. Ti na vuyelo byo kongoma eka ntshovelo na tikhonsticuwenti ta bayokhemikala eka swimila. Vunyingi bya primary metabolites swi vekiwe hi ku tirhisa LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) eka mihandzu leyi nga ntshovelo wa ku tirhiwa kun'wana loku ku nga vuriwa laha henhla. Vuyelo byi kombe leswo ku tirhana na nkala nkayivelo wa mati, swi pfanganisiwa na misava ya loam ehansi ka mbangu wa nete ya ndzhuti, swi ngetelele swinene asparagine content from 10×106 to 80x106 nsi ka nkayivelo swinene wa mati na misava ya loam, swi ngetelele ti-total mz loko swi kotlangisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivelo wa mati swinene, swi pfanganisiwa na misava ya sava ya loam ehansi ka mbangu wa mavala lama pfulekeke hi nkarhi wa sizini ya 2017/2018, swi ngetelele swinene dopa content ku suka eka 12,030 to 324,240 peak intensity, kasi hi nkarhi wa sizini ya 2018/2019 season, 4-hydroxyproline ku 10×106 to 90x106 peak intensity swi ngeteleleke swinene. Ku tirhana ko fanana ehansi ka mbangu wa greenhouse, swi ngetelele swinene acetylcarnitine content ku suka eka 3,761 to 82,841 area under the curve hi nkarhi wa sizini ya 2018/2019. Ku tirhiwa ka ku nga ri na ku kayivela ka mati ka le xikarhi swi pfanganisiwa na misava ya loam ehansi ka mbangu wa mavala lama nga rivaleni swi ngetelele swinene norepinephrine content from 71,577 to 256,1045 peak intensity. Ndzavisiso wu pimanyete leswo mpfanganyiso wa ku tirhana na tilevhele ta ncheleteo wa mati (laha ku nga ri ku na ku kayivela ka mati na le ku nga na nkayivelo wa mati) na misava ya loam na misava ya sava ya loam) ehansi ka greenhouse na nete ya ndzhuti swi khumbe swinene ku xifta ka mihandzu ya primary metabolites profile of C. metuliferus E. Mey. ex naudin loko ku langutaniwa na tifekthara ha yin'we yin'we hi ku landzelelana.flavonoids content (0.85 mg CE g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivela mati ka levhela ya le xikarhi na misava ya sava ya loam ehansi ka mbangu wa nete ya ndzhuti swi kombise ku ngeteleleka ka Zn content (12.7 μg g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Vuyelo byi kombisa leswaku ximila lexi xi na mihandzu ya khwaliti yo antswa hi ku landza ku hlengeletana ka tinutriyeente na tikhonstituwenti ta bayokhemikali, loko xi kurisiwa ehansi na ku ka ku nga ri na nkayivela mati kumbe ku kayivelanyana ka mati, hi ku tirhisa misava ya loam kumbe misava ya sava eka nete ya ndzhuti na le ka mavala ya le rivaleni.Ti-primary betabolites ti tlhela titiviwa tanihi biological compounds leti ti faneleke eka ku kula na ku hluvuka ka ximila hi nkarhi wa vutomi bya xona. Ti na vuyelo byo kongoma eka ntshovelo na tikhonsticuwenti ta bayokhemikala eka swimila. Vunyingi bya primary metabolites swi vekiwe hi ku tirhisa LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) eka mihandzu leyi nga ntshovelo wa ku tirhiwa kun'wana loku ku nga vuriwa laha henhla. Vuyelo byi kombe leswo ku tirhana na nkala nkayivelo wa mati, swi pfanganisiwa na misava ya loam ehansi ka mbangu wa nete ya ndzhuti, swi ngetelele swinene asparagine content from 10×106 to 80x106 mz loko swi kotlangisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivelo wa mati swinene, swi pfanganisiwa na misava ya sava ya loam ehansi ka mbangu wa mavala lama pfulekeke hi nkarhi wa sizini ya 2017/2018, swi ngetelele swinene dopa content ku suka eka 12,030 to 324,240 peak intensity, kasi hi nkarhi wa sizini ya 2018/2019 season, 4-hydroxyproline ku 10×106 to 90x106 peak intensity swi ngeteleleke swinene. Ku tirhana ko fanana ehansi ka mbangu wa greenhouse, swi ngetelele swinene acetylcarnitine content ku suka eka 3,761 to 82,841 area under the curve hi nkarhi wa sizini ya 2018/2019. Ku tirhiwa ka ku nga ri na ku kayivela ka mati ka le xikarhi swi pfanganisiwa na misava ya loam ehansi ka mbangu wa mavala lama nga rivaleni swi ngetelele swinene norepinephrine content from 71,577 to 256,1045 peak intensity. Ndzavisiso wu pimanyete leswo mpfanganyiso wa ku tirhana na tilevhele ta ncheleteo wa mati (laha ku nga ri ku na ku kayivela ka mati na le ku nga na nkayivelo wa mati) na misava ya loam na misava ya sava ya loam) ehansi ka greenhouse na nete ya ndzhuti swi khumbe swinene ku xifta ka mihandzu ya primary metabolites profile of C. metuliferus E. Mey. ex naudin loko ku langutaniwa na tifekthara ha yin'we yin'we hi ku landzelelana. / Thuto ye e dirilwe ka maikemišetšo a go nyakišiša tiragatšo le boleng bja Cucumis metuliferus E. Mey. Ex Naudin (phara ya seAfrika) mo tikologong yeo e šireleditšwego le ya mo lebaleng e le nepo ya go bapetša tshekatsheko ya kotollu le boleng go hola thekišo ya mabele. Maikemišetšo kakaretšo e le go humana tsela ya maleba ya go mediša C. Metuliferus dipakeng tša mokhukhutšhireletšo, nnete ya moriti le mo ditikologong tša mabala ao a bulegilego gore go nolofatšwe tshekatsheko. Go boima go mediša dipeu tša C. Metuliferus ka tlase ga maemo a tikologo ya maleba ya go tlwaelega yeo e šomišwago ke bontši bja balemi. Medišo ya dipeu e lekanyeditšwe go ya le ka sedirišwa sa go mediša dimela, go fala dipeu le go hlahlobo ya boleng bja dipeu. Dikokwana tše ke tšona di laolago kotollu le boleng bja dienywa. Nepokgolo ya thuto ye e be e le go nyakišiša khuetšo ya tlhahlobo ya polokego ya dipeu tše, sedirišwa sa go mediša dimela (mohlaba+vermiculite, peat TS1 le motswako wa dipeu) le phalo ya dipeu go kgonthišiša katlego ya go mela ga dipeu tša C. Metuliferus. Dipeu di ile tša arolwa go ya le ka magoro a mane, bjalo ka peu ya go okobatšwa ka dikhemikhale yeo e hlahlobilwego, peu yeo e sa okobatšwago gomme e hlahlobilwe, peu ya go okobatšwa e sa hlahlobjwago le peu yeo e sa okobatšwago gomme e se ya hlahlobjwa. Boraro bja didirišwa tše di laeditše katlego ya go mediša yeo e ka balelwago go 80%. Dipoelo di šupa gore dipeu tšeo di okobaditšwego di se a hlahlobjwa le tšeo di sa okobatšwago di hlahlobilwe di bile le katlego ya tlhogo yeo e ka balelwago go 93.6% le 91.3%. Tlhogo ya fase e bile go dipeu tšeo di okobaditšwego di sa hlahlobjwago ka poelo ya 37%. Dipeu tše di hlahlobilwego di laeditše botelele bja 12cm gomme e le bjona bja go di feta ka moka. Dipeu tšeo di sa falwago le go hlahlobjwa di bile le botelele bja fase bja go balelwa go 3.44 cm ka dibeke tše nne. Bjalo, tlhahlobo ya dipeu e tlišitše katlego go fetiša phalo. Ka ge mudu wa dipeu o le bohlokwa go tšhutišetšo ya maphelo a dimela, thuto ye e thekga mmutedi le tlhahlobo ya dipeu bjalo ka tlhakanyo ya go mediša dimela tša boleng bja maleba. Tlhokego ya meetse, go oketšega ga baagi, le diphetogo tša klaemete ke tšona dikokwana tše di amago tšwelelo go tša temo nakong ya bjale. C. Metuliferus E. Mey. ex naudin e mela ka lešokeng tlhagong ya yona; efela, kotullo ya yona go tlhokego ya meetse, go mehuta ya mašemo le mehuta ya mabu ga se e ahlaahlwe. Thuto e ile ya dirwa go humana mokgwa wa go bjala/mediša dimela dipakeng tša mokhukhutšhireletšo, nnete ya moriti le boemo bja lebala le le bulegilego, gore go tle go tšweletšwe tshekatsheko yeo e laetšago diphapano tša mabato a puno. Nyakišišo ye e diritšwe ka fase ga maemo a mokhukhutšhireletšo, nnete ya moriti le lebaleng le le bulegilego Yunibesithing ya Afrika Borwa (UNISA) Khamphasing ya tša Saense, go la Florida, Gauteng (-26.157831 S, 27.903364 E) ka nako ya sehla sa 2017/2018 le 2018/2019 ka dinako tša go mela. Teko ye e ithekgile godimo ga dikokwana tše pedi – mabu (monola le mohlaba) le mabato a taolo ya go nošetša (tlhokego ya meetse ya lebato la fase, tlhokego ya meetse ye e lekanetšego le tlhokego ya meetse ya lebato la godimo). Diteko di be di beilwe ka mokgwa wo o sa rulaganywago gomme teko ye nngwe le ye nngwe e boeleditšwe ga senyane (9) bjalo ka ge e laeditšwe godimo. Dipharametha tšeo di lekantšwego di akaretša dikagare tša chlorophyll, stomatal conductance le bjalo ka tšhomišo ya meetse, palomoka ya dimela, dimela tše di bonagalago ka godimo, lenaneo la puno, botelele bja enywa, palo ya enywa le tšhomišo ya meetse ke dimela. Dipoelo di tšweletša gore teko ya mo lebaleng le le bulegilego le meetse a a lekanetšego gammogo le monola di oketša palo ya dienywa. Teko ya mo lebaleng le le bulegilego go kopantšhwa le meetse ao a lekanetšego le monola, di laeditše tšhomišo ya meetse yeo e balelwago go (6.2 kg m-3) ge go bapetšwa le diteko tše di ngwe. Go bohlokwa go lemoga gore ga ga go na diphapano magareng ga mohlaba le monola tšhomišong ya meetse (WUE). Efela, mohlaba o laeditše (WUE) ya godimo ge go bapetšwa le monola. Se se bolela gore, go ka tšewa sephetho sa gore teko ya dipeu lebaleng le le bulegilego, taolo ya go nošetša dimela (ye gabotse le ye e lekanetšego) le mohlaba ke didirišwa tšeo go eletšwago balemi gore ba di šomiše go humana (WUE) ya godimo le tšweletšo ye e atlegilego ya C. metuliferus. Bontši bja phepo mo mabeleng bo hlohleletšwa ke dikokwana tša go swana le meetse, tikologo ya mo a melago gona, dihlase tša letšatši le mehuta ya mabu. Efela, dikokwana tše di huetšago bontši bja diphepo go dienywa tša C. metuliferus ga dišo di tsebjwa. Nepo ya thuto ye e be e le go nyakolla khuetšo yeo dikokwana tše di latelago; di nago le yona go bontši bja diphepo go enywa ya C. Metuliferus: mabato a meetse (tlhokego ya meetse ya lebato la fase, tlhokego ya meetse ye e lekanetšego le tlhokego ya godimo ya meetse), mehuta ya mabu (monola le mohlaba) le tikologo ya go mediša (mokhukhutšhireletšo, nnete ya moriti le lebala le le bulegilego). Diteko tša enywa yeo e omišitšwego ka setšidifatšing e ile ya šomišwa go tšweletša boleng bja ꞵ-carotene, vitamin C, vitamin E, total soluble sugars, crude proteins, total flavonoids, total phenols, le micro-nutrients (Cu, Fe, Mn le Zn). Dipoelo di šupa gore dimela tše di godišitšwego ka fase ga nnete ya moriti, go akaretša le tlhokego ya meetse ya godimo le monola di nyološitše diswikiri tše di humanegago mo dimeleng (15.8 ˚Brix) ge go bapetšwa le diteko tše dingwe. Dimela tikologong ya nnete ya moriti go akaretša le tlhokego ya meetse ye e lekanetšego le monola di ile tša nyološa phroteine (6.31 ˚Brix). Teko go tlhokego ya meetse ya godimo go akaretša le monola ka tlase ga boemo bja mokhukhutšhireletšo go nyološitše diteng tša ꞵ-carotene (1.65 mg 100 g-1 DW) ge e bapetšwa le diteko tše dingwe. Teko go tlhokego ya meetse go akaretša monola ka fase ga nnete ya moriti go nyološitše Vitamin C (33.1 mg100 g-1 DW). Teko go hlokego ya meetse ya godimo go akaretša mohlaba tikologong ya mokhukhutšhireletši go nyološitše diteng tša vitamin E (35.1 mg/100 g-1 DW) ge e bapetšwa le diteko tše dingwe. Teko ya go se hlokege ga meetse, go akaretša le monola tikologong ya lebala le le bulegilego e nyološitše palomoka ya diteng tša phenolic (6.4 mg GAE/g-1 DW) ge e bapetšwa le diteko tše dingwe. Teko lebala le le bulegilego ka fase ga hlokego ya meetse ye godimo go akaretša monola go okeditše diteng tša flavonoids (0.85 mg CE g-1 DW) mo dienyweng tša gona ge e bapetšwa le diteko tše dingwe. Teko go hlokego ya meetse ye e lekanetšego le mohlaba ka fase ga nnete ya moriti di laeditše go oketšega ga diteng tša Zn (12.7 μg g-1 DW) ge e bapetšwa le diteko tše dingwe. Dipoelo di laetša gore semela se se thunya boleng bjo bo kgodišago bja dienywa ge go lebeletšwe bontši bja diphepo le dikokwana tša dikhemikhale ge di medišwa mo go sa hlokegago meetse go yela go mo go hlokegago meetse ka go lekanela, go šomišitšwe monola goba mohlaba mo nneteng ya moriti le mo lebaleng le le bulegilego. Dimetabolite tša motheo di tsebjwa bjalo ka motswako wa tlhago wo o lego bohlokwa go kgolo le tlhabollo ya dimela maphelong a tšona. Di na le khuetšothwii go dikokwana tša puno le khemikhale ya hlago ya dimela. Bontši bja dimetabolites tša motheo di humanwe ka go šomiša LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) ya go tšwa dienyweng tšeo di bunnwego ditekong tše di šetšego di boletšwe. Dipoelo di laeditše gore teko ya hlokego ya meetse ya lebato la fase go akaretša le mohlaba tikologong ya nnete ya moriti; e nyološitše asparagine content go tloga go 10×106 go ya go 80x106 peak intensity ge e bapetšwa le diteko tše dingwe. Tlhokego ya meetse ya lebato la fase e akaretša le monola tikologong ya lebala le le bulegilego ka nako ya sehla sa 2017/2018, 4-hydroxyproline go tšwa go 10×106 go ya go 90x106 area under curve e ile ya nyušwa. Teko ya go swana le ye tikologong ya mokhukhutšhireletšo e ile ya oketša dikagare tša acetylcarnitine go tšwa go 3,761 go ya go 82, 841 peak intensity ka nako ya sehla sa 2018/2019. Teko go tlhokego ya meetse ye e lekanetšego go akaretšwa le monola tikologong ya lebala le le bulegilego e nyološitše dikagare tša norepinephrine go tloga go 71,577 go ya go 256,1045 peak intensity. Diteko di šupa gore ge go kopantšwe taolo ya mabato a go nušetša (tlhokego ya meetse ya lebato la fase le tlhokego ya meetse ya lebato la godimo) le (monola le mohlaba) ka fase ga boemo bja mokhukhutšhireletšo le nnete ya moriti go ile gwa ama katološo ya dimetabolites tša motheo tša enywa ya C. metuliferus ge di bapetšwa le kokwana ye nngwe le nngwe. / College of Agriculture and Environmental Sciences / Ph. D. (Agriculture)

Page generated in 0.0411 seconds