• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Chonkaew, Wunpen 05 1900 (has links)
A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and higher toughness were found with increasing oligomer content; thus in this case there was a correlation between good mechanical and improved tribological properties. The results indicated that increasing toughness and formation of a transfer film contribute to improved tribological performances.
2

Rheology of Filled and Unfilled Polyurethanes for Reactive Extrusion-Based Applications

Reynolds, John Page 19 December 2023 (has links)
Additive manufacturing (AM) is a form of production that directly processes raw materials into their final form by building the product in a layer-by-layer fashion. Numerous types of AM exist, including selective laser sintering (SLS) of polymeric powders, vat polymerization (VP) of low viscosity photocurable resins, and material extrusion (MatEx) of thermoplastic or high viscosity composite materials. Because of its ability to reduce material waste while printing complex geometries, AM has the potential to revolutionize the manufacturing industry for a diverse set of materials and products. MatEx of thermoplastic feedstocks is most commonly performed using fused filament fabrication (FFF) – a form of melt extrusion. A solid filament is fed directly into a heated nozzle, where it melts onto a build bed before resolidifying in a matter of seconds. While this is the most common form of AM, especially among hobbyists, the material catalog is limited to thermoplastic polymers, and difficulties arise when fillers are introduced (e.g. reactions at elevated temperatures, clogging, disruption of polymer chain diffusion, and large increases in viscoelastic properties). To combat these challenges, direct ink write (DIW) AM extrudes highly viscous composites by applying pneumatic backpressure to a syringe, such that the material can be extruded in ambient conditions. This method enables processing of unreacted, thermosetting resins which have been filled with a large proportion of solid particulate fillers, called "highly filled" inks. The interparticle network formed from particle-particle interactions in the form of weak surface forces (e.g. Van der Waals forces) provides structural stability of the printed lines, such that they can sustain the weight of subsequent layers. In the realm of DIW 3D printing material discovery and processing, there are currently three major challenges. First, the high shear region of the nozzle frequently disrupts the interparticle network through a de-agglomeration process, such that there is a finite timescale for the interparticle network to reestablish itself. During this timeframe, the deformation/reformation process causes printed lines to sag, which negatively impacts both print quality and mechanical properties. Second, printed parts require a post-processing step to develop adequate mechanical properties suitable for the final product. The kinetics of this cure process are extremely slow, often taking multiple days or weeks to reach completion. Third, high shear rheological characterization of highly filled inks is challenging because of the numerous artifacts of error associated with high shear testing environments (e.g. sample loss/edge fracture, slip, and large sample size requirements). A literature review in Chapter 2 outlines the most recent advances in highly filled polyurethane processing for DIW, with a particular focus on how interparticle network recovery – in the form of thixotropy – can be tailored using a variety of reactive inks. The subsequent chapters of this dissertation address these challenges by systematically downselecting reactive inks appropriate for highly filled DIW extrusion while introducing numerous process relevant rheological protocols. An initial discussion in Chapter 3 covers the potential drawbacks of thermoplastic polyurethane (TPU) processing as it relates to industrial scale melt extrusion. Specifically, multiple side reactions and degradation processes are identified for a variety of TPU manufacturers. Such reactions elicit undesirable solid-like particulate buildup within the extrusion line, and the impacts/causes of these reactions are quantified using rheological criteria. These protocols offer evidence that differences in processability can arise not just between manufacturers, but also between lots of TPU from the same manufacturer. To address these concerns, Chapter 4 offers an alternative form of polyurethane processing in the form of a thermosetting reaction between hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI). When uncatalyzed at room temperature, full conversion takes place over the course of multiple weeks which necessitates an accelerated kinetic analysis. Hence, a combination of chemorheological and spectroscopic methods are used to rapidly probe for changes in isocyanate reactivity using limited sample quantities, which substantiate the advantages and disadvantages of chemorheology and spectroscopy in the context of curing studies. While this synthetic pathway provides mechanical properties appropriate for the final printed product, a major concern is retention of green body strength post deposition. In order to maintain the shape of printed beads, ultraviolet (UV) light can be shined in-situ onto the nozzle of a DIW printhead, which actively cures the urethane acrylate ink through free radical polymerization. This technique, termed UV-assisted direct ink write (UV-DIW), assists recovery of the interparticle network. A novel rheological method proposed in Chapter 5, termed the "UV-assisted three interval thixotropy test" (UV-3ITT), quantifies the contribution of UV light towards structural stability and printability. This is accomplished by applying stepwise changes in strain on a torsional photorheometer, optionally applying UV light in the third interval, and then quantifying the contribution of UV light towards process-relevant recovery parameters. Resultingly, the threshold of solid particulate fillers required for UV light to improve print fidelity is determined. While most discussions revolve around torsional rheology, this method has one major drawback: it cannot probe the high shear properties of high solids content materials due to sample loss/edge fracture during steady shear measurement. Capillary rheometers are able to probe the viscosity profiles of highly filled materials in high shear environments, but the cost of the device and the sample requirements are burdensome. To resolve this challenge, the "microcapillary rheometer" is developed in Chapter 6 using common laboratory equipment at a fraction of the cost of a full-scale capillary rheometer, which enables rapid characterization of high solids content materials at extrusion-relevant conditions while exploiting small sample quantities. This study illustrates the accuracy and precision of the microcapillary rheometer when comparing the high shear properties of several highly filled systems to the full-scale capillary rheometer. Results highlight that application of the Bagley and Weissenberg-Rabinowitsch corrections is possible using this novel device, which facilitates calculation of true shear viscosity of high solids content systems. The limited sample requirement facilitates characterization of novel or potentially hazardous materials in a much safer, efficient manner, which accelerates material discovery while improving safety standards. / Doctor of Philosophy / Subtractive manufacturing technologies, which reduce raw materials down from their bulk state into a final product, make up a significant portion of the manufacturing sector today due to the convenience and ease of material processing. Some of the most common forms of subtractive manufacturing include lathing, milling, cutting, drilling, and grinding; these methods are applicable for a diverse set of materials ranging from metals to plastics. By the nature of this process, subtractive manufacturing yields substantial material waste, while limiting the complexity of a final product's design. To combat these unintended consequences, a novel form of production termed additive manufacturing (AM) has grown dramatically in the past several decades. AM directly processes raw materials into their final form which reduces material waste while enabling complex geometries to be "printed." Although there are numerous types of additive manufacturing, the most common forms utilize material extrusion, whereby the raw material is deposited through a nozzle and stacked in a layer-by-layer fashion onto a build bed, thus constructing a final product. For materials that melt and flow at elevated temperatures (i.e. thermoplastic materials), fused filament fabrication (FFF) is ideal since a solid filament can be fed into a heated nozzle, melted onto a build bed, and then quickly re-solidified. However, many polymers do not melt at elevated temperatures, and instead degrade; these materials are termed "thermosetting." To print these materials, unreacted thermosetting precursors, which are filled with a large proportion of solid fillers ("highly filled inks"), can be extruded by applying pneumatic back pressure to a syringe at ambient conditions. The process of extruding these materials layer-by-layer describes the direct ink write (DIW) technique. The solid particulate fillers form structural "networks" due to weak electrostatic forces on the surface of the fillers. These forces provide structural stability and enable the printed lines to hold the weight of subsequent layers. Unfortunately, the high-pressure region of the nozzle disrupts this network, causing the printed lines to sag over time. This effect can be reduced by actively applying ultraviolet (UV) light onto the nozzle during extrusion, which helps to hold the particles in place by curing the resin, thus increasing the capacity for a line to sustain the weight of subsequent layers. This form of material extrusion is termed UV-assisted direct ink write (UV-DIW). Because UV light only partially cures the material during prints, a separate, slower thermosetting reaction can occur as the material rests in an oven or in ambient conditions, which completely cures the printed part and provides sufficient mechanical properties. The combination of UV-curable resins, thermosetting resins, and sufficiently large amounts of solid particulate fillers for material extrusion describes the dual-cure nature of this highly filled UV-DIW process. To understand the curing patterns, flow behavior, and the amount of structural deformation that occurs within the nozzle, rheology becomes a powerful characterization tool. This branch of physics deals with the deformation and flow of matter ranging from simple fluids to complex polymer melts. As such, it is possible to probe reaction progress (chemorheology), structural deformation/reformation (thixotropy), and high-shear regimes representative of the DIW process. The research contained within this dissertation provides a holistic understanding of the overlap between rheology and DIW material extrusion for dual-reactive materials. This process begins by evaluating challenges during melt extrusion of thermoplastic polyurethane while quantifying the rate of degradation side reactions. An alternative form of polyurethane synthesis in the form of a thermosetting reaction is then introduced, whereby the reaction progress is evaluated using both rheological and spectroscopic techniques. Next, a novel rheological protocol is introduced which can predict the structural deformation/reformation of an ink during UV-DIW. This research concludes by proposing a downscaled version of the high-shear capillary rheometer which requires only several grams of material in contrast to the dozens of grams required for full-scale capillary rheometry. In essence, the work presented here rapidly evaluates the complex flow behavior and cure progression of various materials relevant for extrusion processes by utilizing limited sample quantities, thus preserving valuable resources while improving the economics of material discovery.
3

Cure Kinetics of Two Part Epoxy Resin and the Effect on Characterization of Thermal Barrier Coatings

Chang, Sunny 28 May 2015 (has links)
The aerospace industry strives to develop new methods of refining gas turbine engines by increasing power and thermal efficiencies while simultaneously reducing cost. Turbine engines operate under high temperatures and therefore thermal barrier coatings (TBCs) composed of yttria-stabilized zirconia (YSZ) play an important role in improving the performance of the components that make up the engine. Failure of the TBC could lead to catastrophic events, thus requiring consistent and accurate characterization for supplier qualification and production quality assurance. However, due to porosity and the anisotropic behavior of the coating and variability in processing of TBCs, consistent characterization has proven to be extremely challenging. One of the reoccurring issues is the inconsistency in measuring percent porosity, which stems from the difficulty in distinguishing filled pores from damaged, unfilled voids. Sample preparation of TBCs involves sectioning, mounting, grinding, polishing, and characterization. Eliminating variability in characterization begins with mounting which is a critical step to protect the surface integrity and edge retention of the coating during grinding and polishing. The curing kinetics of a slow cure two part epoxy was investigated and the TBC samples were mounted and cured at heating rates of 2, 5, and 10°C/min to 55°C and 70°C. Grinding and polishing procedures simulated industry practices followed by characterization with optical microscopy. Results showed that heating rates of 2°C/min to 55°C and 70°C have the best impregnation properties while uncontrolled or high heating rates of 10°C/min had an increase in the amount of pullouts and lack of infiltration from the epoxy. The curing kinetics of the epoxy needs to be controlled to eliminate the ambiguity of filled and unfilled pores. / Master of Science
4

Strukturiranje i određivanje kinetike reakcija nastajanja funkcionalnih hibridnih materijala na osnovu epoksidnih smola / Structure design and determination of curing kinetics for epoxy based functional hybrid materials

Teofilović Vesna 30 September 2019 (has links)
<p>U ovoj doktorskoj disertaciji je ispitan uticaj montmorilonita i<br />termoplastičnih segmentiranih poliuretana na kinetiku reakcija<br />umrežavanja, strukturu i svojstva funkcionalnih hibridnih<br />materijala na osnovu epoksidnih smola. Pripremljene su dve<br />serije uzoraka hibridnih materijala: prva na osnovu epoksidne<br />smole sa različitim sadržajem organski modifikovanog<br />montmorilonita (0, 1, 3, 5 i 10 mas.%) umrežene sa<br />umreživačem Jeffamine D-230; druga serija je sintetisana na<br />osnovu epoksidne smole, sa različitim sadržajem (10, 15 i 20<br />mas.%) termoplastičnog poliuretanskog elastomera sa<br />različitim sadržajem tvrdih segmenata (20, 25 i 30 mas.%)<br />sintetisanih na osnovu alifatičnog polikarbonatnog diola i<br />heksametilendiizocijanata i produživača lanca butandiola, kao<br />i katalizatora dibutiltin dilaurata; kao i bez dodatog elastomera<br />umrežene sa diaminom Jeffamine D-2000. Umrežavanje<br />reaktivnih sistema sa projektovanim sirovinskim sastavom je<br />praćeno diferencijalnom skenirajućom kalorimetrijom (DSC).<br />Modeli izokonverzije primenjeni su da se ustanovi da li<br />dodatak punila utiče na reakciju umrežavanja hibridnih<br />materijala. Sintetisani materijali su analizirani dinamičkomehaničkom<br />analizom (DMA), mikroskopijom atomskih sila<br />(AFM), kao i TG-DSC i TG-MS metodama i određena su<br />mehanička svojstva (zatezna čvrstoća, prekidno izduženje i<br />tvrdoća po &Scaron;oru A). Epoksidni materijal sa 10 mas.% organski<br />modifikovanog montmorilonita ima značajno niže vrednosti<br />energija aktivacije za definisane stepene reagovanja, čime je<br />potvrđen katalitički efekat gline sa slojevitom strukturom kada<br />je prisutna u reakcionoj sme&scaron;i u dovoljnoj količini. Uticaj<br />otežane difuzije pri kraju reakcije je izraženiji u prisustvu<br />montmorilonita, čime je pokazano da njegovo prisustvo utiče<br />na ceo mehanizam umrežavanja. Utvrđeno je da na vrednosti<br />G&#39;, pored udela montmorilonita, utiče i stepen dispergovanja<br />čestica unutar polimerne matrice. Zaključeno je da dodatak<br />punila do 3 mas. % utiče povoljno na ispitana mehanička<br />svojstva, dok pri sadržaju od 5 i 10 mas. % dolazi do<br />aglomeracije čestica punila, &scaron;to negativno utiče na ispitana<br />svojstva, osim tvrdoće, koja se povećava linearno sa dodatkom<br />punila montmorilonita. Na osnovu rezultata TG analize<br />zaključeno je da je sa porastom udela montmorilonita u<br />epoksidnoj matrici termička stabilnost uzoraka ispitivanih u<br />atmosferi vazduha neznatno pobolj&scaron;ana, dok u inertnoj<br />atmosferi nema uticaja na termičku stabilnost, niti na<br />mehanizam raspada hibridnih materijala na osnovu epoksidnih<br />smola sa različitim udelima montmorilonita. Kod sistema kod<br />kojih je dodavan termoplastični poliuretanski elastomer,<br />zaključeno je da pri većem sadržaju segmentiranih poliuretana<br />u epoksidnoj matrici (10 i 15 mas.%) proces umrežavanja<br />započinje na nižim temperaturama i maksimalna brzina se<br />ostvaruje na nižim temperaturama, a najveća vrednost<br />promena ukupne entalpije reakcije umrežavanja je određena za<br />hibridni materijal sa poliuretanom koji u svojoj strukturi ima<br />30 mas.% tvrdih segmenata. Zatezna čvrstoća hibridnih<br />materijala raste sa porastom udela tvrdih segmenata u strukturi<br />poliuretana, kao i sa porastom masenog udela poliuretanskog<br />elastomera u epoksidnoj matrici. Dodatkom termoplastičnih<br />segmentiranih poliuretana značajno je povećano prekidno<br />izduženje epoksidnih smola. Sa porastom udela tvrdih<br />segmenata kod poliuretana dodatih u istom masenom procentu<br />u epoksidnu matricu, tvrdoća raste. Ustanovljeno je da na<br />konačna svojstva hibridnih materijala utiče izbor polaznih<br />komponenti, način ume&scaron;avanja punila u matricu i uslovi pri<br />kojima se vr&scaron;i umrežavanje. Zaključeno je da je dobro<br />poznavanje kinetičkih parametara reakcije umrežavanja važno<br />za pravilan odabir optimalnih uslova za proizvodnju i preradu<br />hibridnih materijala u industrijskim uslovima.</p> / <p>In this thesis the influence of clay fillers and thermoplastic<br />segmented polyurethanes on the curing kinetics, structure and<br />properties of functional hybrid materials based on epoxy resins<br />was assessed. Two sets of hybrid material samples were<br />prepared. First type of samples was based on epoxy resin with<br />a different content of organically modified montmorillonite (0,<br />1, 3, 5 and 10 wt. %) and crosslinking with hardener Jeffamine<br />D-230. Second type of samples was based on epoxy resin,<br />having different content (10, 15 and 20 wt. %) of thermoplastic<br />segmented polyurethane with different content of hard<br />segments (20, 25 and 30 wt. %) based on aliphatic<br />polycarbonate macrodiols and hexamethylene diisocyanate,<br />with chain extender 1,4-butanediol and the catalyst, dibutyltin<br />dilaurate, and also a sample without added elastomeric<br />polyurethane and crosslinking with hardener Jeffamine D-<br />2000. The curing of the hybrid materials based on epoxy resins<br />systems were investigated by non-isothermal differential<br />scanning calorimetry (DSC). The kinetic study by<br />isoconversion models has been carried out using data from<br />DSC. The synthesized materials were analyzed by dynamicmechanical<br />analysis (DMA), atomic force microscopy (AFM)<br />as well as TG-DSC and TG-MS methods and mechanical<br />properties (tensile strength, elongation and hardness at Shore<br />A) were determined. Epoxy based hybrid material with 10 wt.<br />% of the organically modified montmorillonite has<br />significantly lower activation energy values for the defined<br />reaction rates, thereby confirming the catalytic effect of the<br />clay with the layered structure when present in the reaction<br />mixture in sufficient quantity. The diffusion effects at the end<br />of the reaction are more pronounced in the presence of<br />montmorillonite, which indicates that its presence affects the<br />entire curing mechanism. It was found that G&#39;, along with<br />montmorillonite content, is affected by the degree of particle<br />dispersion inside the polymer matrix. It was concluded that the<br />addition of montmorillonite up to 3 wt. % improves<br />investigated mechanical properties, while the samples with 5<br />and 10 wt. % of montmorillonite resulted in agglomeration of<br />the filler particles, which negatively influenced the<br />investigated properties, except for the hardness which<br />increases linearly with the addition of montmorillonite. TG<br />analysis shows that the increase of montmorillonite content in<br />the epoxy matrix slightly improves the thermal stability in the<br />air, while in the inert atmosphere there is no influence on the<br />thermal stability nor on the mechanism of the decomposition<br />of epoxy based hybrid materials. In the system with a<br />thermoplastic polyurethane filler, it was concluded that hybrid<br />materials with a higher content of segmented polyurethane (10<br />and 15 wt. %), curing process starts at lower temperatures and<br />the maximum speed is achieved at lower temperatures and the<br />highest value of changes in total enthalpy of the crosslinking<br />reaction is determined for the epoxy hybrid material with<br />polyurethanes containing 30 wt. % of hard segments. Tensile<br />strength of hybrid materials increases with the increase of hard<br />segments content in the polyurethane elastomer as well as with<br />the increase of polyurethane content in the epoxy matrix. The<br />addition of thermoplastic segmented polyurethanes<br />significantly increased the elongation at break of prepared<br />epoxy resins hybrid materials. The increase of the hard<br />segments content in polyurethane, in the same ratio, improves<br />hardness of epoxy based hybrid material. It was concluded that<br />the final properties of hybrid materials are influenced by the<br />selection of initial compounds, methods of processing and the<br />curing conditions. It was concluded, as well that knowing the<br />kinetic parameters of curing reaction is important for the<br />proper selection of optimal parameters for production and<br />processing of hybrid materials in industrial conditions.</p>
5

Sustainable resins for large rotating machines / Hållbara hartser för stora roterande maskiner

Bharj, Gurpreet Kaur January 2024 (has links)
Det elektriska isolationssystemet för stora roterande maskiner består av ett kompositmaterial av glimmertejp och ett värmehärdande harts. Hartset hjälper till att mekaniskt stabilisera lindningsstrukturen i statorn samt ersätter luftinneslutningar i isolationssystemet för att undertrycka bildandet av elektriska urladdningar. Vakuumtryckimpregneringsprocessen (VPI) är den föredragna tekniken för att impregnera glimmerisolationen med det värmehärdande hartset. Hartset som används i VPI-processen är sammansatt av flera nyckelkomponenter, inklusive den härdbara polymeren, härdare som deltar i tvärbindning, reaktiva utspädningsmedel för förbättrade processegenskaper och ytterligare tillsatser som katalysatorer och stabilisatorer. Olika hartskemier har använts under åren för VPI-processen. Det finns dock betydande farhågor när det gäller påverkan på miljö- och arbetshälsa för några av dessa komponenter. Den ökade medvetenheten om de skadliga effekterna av olika kemikalier har drivit på arbetet med att utveckla hartser med reducerade flyktiga organiska föreningar som kan vara skadliga för såväl miljön som de som hanterar hartset i stora mängder. Dessutom har stränga EU-regler klassificerat vissa härdare och reaktiva utspädningsmedel som ’substances of very high concern’, vilket har lett till ett stort behov av att hitta alternativ för dessa föreningar. Detta examensarbete består av en litteraturstudie som har genomförts med hänsyn till de önskade egenskaperna för VPI-hartser för att utvärdera potentiella kandidater som alternativ till härdare och reaktiva utspädningsmedel. Fyra olika impregneringshartser har tagits i beaktande som alternativ. Olika härdningskinetikparametrar har uppmätts med olika karakteriseringstekniker såsom infraröd spektroskopi av Fouriertransform i realtid, reologi och differentiell scanningkalorimetri. Eftersom de termiska, elektriska och mekaniska egenskaperna är nödvändiga för att säkerställa långvarig livslängd för industriellt nyttjade roterande maskiner, har olika egenskaper studerats genom att utföra dynamisk mekanisk analys, drag- och böjningstestning samt dielektrisk spektroskopi, genom att härda hartserna under lämpliga tids- och temperaturförhållanden. Alla de fyra hartserna visade varierande härdningskinetikparametrar och egenskaper som har korrelerats till hartskemin samt att hartsernas egenskaper har utvärderats i jämförelse med varandra. / The electrical insulation system for large rotating machines consists of a composite material of mica tape and a thermosetting resin. The resin helps in mechanically stabilizing the winding structure in the stator as well as replaces air inclusions in the insulation system to suppress the formation of discharges. Vacuum pressure impregnation (VPI) is the preferred technique to impregnate this mica tape with the thermosetting resin. The resin used in VPI process is composed of several key components, including the thermoset polymer, a hardener that participates in crosslinking, reactive diluents for improved processability and and additional additives like catalysts and stabilizers. Different chemistries have been used over the years for the VPI process. However, there are significant concerns regarding the environmental and occupational health and safety of some of these components.  The increasing awareness of the harmful effects of various chemicals has driven efforts to develop resins with reduced volatile organic compounds which can be detrimental to both the environment as well as those who are handling the resin in large quantities. Furthermore, stringent EU regulations have classified some hardeners and reactive diluents as substances of very high concern which has resulted in pressing need to find alternatives for these compounds.  This thesis, thus, consists of a literature study which has been performed taking the desired properties for VPI resins into consideration to evaluate potential candidates as alternatives for hardeners, and reactive diluents. Four different chemistries of impregnation have been taken into consideration as alternatives. Different curing kinetics parameters have been measured by different characterization techniques such as real time Fourier transform infrared spectroscopy, rheology, and differential scanning calorimetry. As the thermal, electric, and mechanical factors are necessary to ensure long term lifespan of industrial machines, different properties have been studied by performing dynamic mechanical analysis, tensile and flexural testing as well as dielectric spectroscopy by curing the resins under appropriate time and temperature conditions. All the four resins showed varied curing kinetics parameters and properties which have been correlated to the chemistry involved in the resin as well as evaluated in comparison to each other.
6

Sustainable resins for large rotating machines / Hållbara hartser för stora roterande maskiner

Bharj, Gurpreet Kaur January 2024 (has links)
Det elektriska isolationssystemet för stora roterande maskiner består av ett kompositmaterial av glimmertejp och ett värmehärdande harts. Hartset hjälper till att mekaniskt stabilisera lindningsstrukturen i statorn samt ersätter luftinneslutningar i isolationssystemet för att undertrycka bildandet av elektriska urladdningar. Vakuumtryckimpregneringsprocessen (VPI) är den föredragna tekniken för att impregnera glimmerisolationen med det värmehärdande hartset. Hartset som används i VPI-processen är sammansatt av flera nyckelkomponenter, inklusive den härdbara polymeren, härdare som deltar i tvärbindning, reaktiva utspädningsmedel för förbättrade processegenskaper och ytterligare tillsatser som katalysatorer och stabilisatorer. Olika hartskemier har använts under åren för VPI-processen. Det finns dock betydande farhågor när det gäller påverkan på miljö- och arbetshälsa för några av dessa komponenter. Den ökade medvetenheten om de skadliga effekterna av olika kemikalier har drivit på arbetet med att utveckla hartser med reducerade flyktiga organiska föreningar som kan vara skadliga för såväl miljön som de som hanterar hartset i stora mängder. Dessutom har stränga EU-regler klassificerat vissa härdare och reaktiva utspädningsmedel som ’substances of very high concern’, vilket har lett till ett stort behov av att hitta alternativ för dessa föreningar. Detta examensarbete består av en litteraturstudie som har genomförts med hänsyn till de önskade egenskaperna för VPI-hartser för att utvärdera potentiella kandidater som alternativ till härdare och reaktiva utspädningsmedel. Fyra olika impregneringshartser har tagits i beaktande som alternativ. Olika härdningskinetikparametrar har uppmätts med olika karakteriseringstekniker såsom infraröd spektroskopi av Fouriertransform i realtid, reologi och differentiell scanningkalorimetri. Eftersom de termiska, elektriska och mekaniska egenskaperna är nödvändiga för att säkerställa långvarig livslängd för industriellt nyttjade roterande maskiner, har olika egenskaper studerats genom att utföra dynamisk mekanisk analys, drag- och böjningstestning samt dielektrisk spektroskopi, genom att härda hartserna under lämpliga tids- och temperaturförhållanden. Alla de fyra hartserna visade varierande härdningskinetikparametrar och egenskaper som har korrelerats till hartskemin samt att hartsernas egenskaper har utvärderats i jämförelse med varandra. / The electrical insulation system for large rotating machines consists of a composite material of mica tape and a thermosetting resin. The resin helps in mechanically stabilizing the winding structure in the stator as well as replaces air inclusions in the insulation system to suppress the formation of discharges. Vacuum pressure impregnation (VPI) is the preferred technique to impregnate this mica tape with the thermosetting resin. The resin used in VPI process is composed of several key components, including the thermoset polymer, a hardener that participates in crosslinking, reactive diluents for improved processability and and additional additives like catalysts and stabilizers. Different chemistries have been used over the years for the VPI process. However, there are significant concerns regarding the environmental and occupational health and safety of some of these components.  The increasing awareness of the harmful effects of various chemicals has driven efforts to develop resins with reduced volatile organic compounds which can be detrimental to both the environment as well as those who are handling the resin in large quantities. Furthermore, stringent EU regulations have classified some hardeners and reactive diluents as substances of very high concern which has resulted in pressing need to find alternatives for these compounds.  This thesis, thus, consists of a literature study which has been performed taking the desired properties for VPI resins into consideration to evaluate potential candidates as alternatives for hardeners, and reactive diluents. Four different chemistries of impregnation have been taken into consideration as alternatives. Different curing kinetics parameters have been measured by different characterization techniques such as real time Fourier transform infrared spectroscopy, rheology, and differential scanning calorimetry. As the thermal, electric, and mechanical factors are necessary to ensure long term lifespan of industrial machines, different properties have been studied by performing dynamic mechanical analysis, tensile and flexural testing as well as dielectric spectroscopy by curing the resins under appropriate time and temperature conditions. All the four resins showed varied curing kinetics parameters and properties which have been correlated to the chemistry involved in the resin as well as evaluated in comparison to each other.
7

POLYURETHANES in RIGID and FLEXIBLE ELECTRONICSNOVEL HYBRID PROCESSING TECHNIQUES and REAL-TIME MONITORING OF MATERIAL PROPERTIES

Nugay, Isik Isil January 2014 (has links)
No description available.
8

Creating material properties for thermoset injection molding simulation process

Tran, Ngoc Tu 17 March 2020 (has links)
Um den Spritzgießprozess zu simulieren, sind korrekte Materialdaten nötig. Diese Daten umfassen Viskositätsmodelle, Wärmekapazitätskoeffizienten, Wärmeleitfähigkeitskoeffizienten, PVT-Modelle und bei reaktiven Materialien Härtungsmodelle. Bei der Spritzgießsimulation von Thermoplasten sind die Materialdaten in der Regel in den Simulationstools verfügbar. Der Anwender kann problemlos Thermoplastmaterialdaten auswählen, die bereits in die Materialdatenbank der Simulationswerkzeuge eingebettet waren, um die gesamten Phasen des Thermoplastspritzgießprozesses zu simulieren. Bei der Duroplastspritzgießsimulation sind nur begrenzt Materialdaten vorhanden und selten aus der Datenbank der Simulationswerkzeuge verfügbar, da sie nicht nur bei der Messung rheologischer und thermischer Eigenschaften, sondern auch bei der Modellierung rheologischer und kinetischer mathematischer Modelle kompliziert sind. Daher ist es notwendig, eigene Materialdaten zu generieren. Um dieses Problem zu lösen, bedarf es einer umfangreichen Wissensbasis bei der Messung von Materialeigenschaften sowie der Erstellung eines Optimierungsalgorithmus´. Um den Prozess des duroplastischen Spritzgießens exakt zu simulieren, bedarf es zudem fundierter Kenntnisse über die Formfüllungseigenschaften dieser Materialien. Die Untersuchung des Fließverhaltens von duroplastischen Spritzgießmassen im Inneren der Kavität ist jedoch nicht ausreichend beschrieben. Bisher gab es noch keine veröffentlichten Hinweise, die zeigen, wie man aus experimentellen Messdaten (thermische und rheologische Daten) für den reaktiven Spritzgießsimulationsprozess komplette Materialdaten für Duroplaste erzeugen kann. Diese Probleme führen zu einer Abhängigkeit der Anwender von der Materialdatenbank der Simulationssoftware, was zu einer Einschränkung der Anwendung der Computersimulation in der duroplastischen Spritzgießsimulation und dem Vergleich zwischen experimentellen und Simulationsergebnissen führt. Darüber hinaus stellt sich die Frage, ob es beim Füllen der Kavität ein Wandgleiten zwischen Duroplastschmelze und Wandoberfläche gibt oder nicht. Aus diesem Grund wird die Wirkung des Wandgleitens auf die Kavitätenoberfläche bei der Simulation des duroplastischen Spritzgießens immer noch vernachlässigt. Die vorliegende Arbeit konzentriert sich auf drei wichtige wissenschaftliche Ziele. Das erste ist die Innovation eines neuen technischen Verfahrens zur physikalischen Erklärung des Formfüllverhaltens von duroplastischen Spritzgießmassen. Das zweite Hauptziel ist die Entwicklung einer numerischen Methode zur Erstellung eines duroplastischen Materialdatenblattes zur Simulation der Formfüllung von duroplastischen Spritzgießmassen. Schließlich wird die Erstellung von Simulationswerkzeugen auf der Grundlage der physikalischen Gegebenheiten und des erzeugten Materialdatenblattes durchgeführt. / To simulate the injection molding process, it is necessary to set material data. The material data for an injection molding process must include a viscosity model and its fitted coefficients, heat capacity coefficients, thermal conductivity coefficients, a PVT model and its coefficients, a curing model and its coefficients (only for reactive injection molding). With thermoplastics injection molding simulation, the material data is generally available from simulation tools. Users could easily choose thermoplastics material data that was already embedded in the material data bank of simulation tools to simulate the entire phases of thermoplastics injection molding process. However, with thermosets injection molding simulation, the material data is found in limited sources and seldom available from data bank of simulation tools because of complication not only in rheological and thermal properties measurement but also in modeling rheological and cure kinetics mathematical models. Therefore, with thermoset injection molding compounds that its material data bank has not been found in data bank of simulation tools, before setting material data, it is necessary to create its own material data that simulation packages do not supply a tool. Therefore, to solve this problem, it requires an extensive knowledge base in measurements of material properties as well as optimization algorithm. In addition, to simulate exactly the thermosets injection molding compound process, it requires a profound knowledge in the mold filling characteristics of thermoset injection molding compounds. However, investigation of flow behavior of thermosets injection molding compounds inside the mold has not been adequately described. Up to now, there has not been any article that shows a complete way to create thermoset material data from measured experimental data (thermal data and rheological data) for the reactive injection molding simulation process. These problems are leading to the users ‘dependency on the material data bank of simulation tools, leading to restriction in application of computer simulation in the thermoset injection molding simulation and comparison between experimental and simulation results. Furthermore, there is still a big question related to whether there is or no slip phenomenon between thermosets melt and the wall surface during filling the cavity, for which has not yet been found an exact answer. Because of this the effect of wall slip on the cavity surface is still ignored during thermoset injection molding simulation process. This thesis focused on three key scientific goals. The first one is innovation of a new technical method to explain the mold filling behavior of thermoset injection molding compounds physically. The second key goal is developing numerical method to create thermoset material data sheet for simulation of mold filling characterizations of thermoset injection molding compounds. Finally, creating a simulation tool base on the physical technique and generated material data sheet.

Page generated in 0.0904 seconds