• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 25
  • 19
  • 16
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS

Martí Calatayud, Manuel César 12 January 2015 (has links)
La presente Tesis Doctoral consiste en la determinación de las propiedades de transporte de diferentes especies catiónicas a través de membranas de intercambio catiónico. Las membranas de intercambio iónico son un componente clave de los reactores electroquímicos y de los sistemas de electrodiálisis, puesto que determinan el consumo energético y la eficiencia del proceso. La utilización de este tipo de membranas para el tratamiento de efluentes industriales no es muy extendida debido a los requisitos de elevada resistencia química y durabilidad que deben cumplir las membranas. Otro asunto importante radica en la eficiencia en el transporte de los iones que se quieren eliminar a través de la membrana. Normalmente, existe una competencia por el paso a través de las membranas entre diferentes especies debido al carácter multicomponente de los efluentes a tratar. Sin embargo, una mejora en las propiedades de las membranas de intercambio iónico permitiría la implantación del tratamiento mediante reactores electroquímicos de efluentes industriales con un contenido importante en compuestos metálicos, tales como los baños agotados de las industrias de cromado. La utilización de una tecnología limpia como la electrodiálisis conllevaría diferentes ventajas, entre las cuales destacan la recuperación de los efluentes para su reutilización en el proceso industrial, el ahorro en el consumo de agua y la disminución de la descarga de contaminantes al medio ambiente. La determinación de las condiciones de operación óptimas así como la mejora de las propiedades de transporte de las membranas constituye el principal tema de la presente investigación. Para ello, se emplearán diferentes tipos de membrana. En primer lugar, se estudiará el comportamiento de las membranas poliméricas comerciales que poseen unas propiedades de resistencia química elevadas, las cuales se tomarán como referencia. De forma paralela, se producirán membranas conductoras de iones a partir de materiales cerámicos económicos, ya que la resistencia de los materiales cerámicos a sustancias oxidantes y muy ácidas es mayor que la de los materiales poliméricos. Este punto constituye la parte más innovadora de la investigación, puesto que la mayoría de las membranas de intercambio iónico comerciales están basadas en materiales poliméricos que no pueden resistir las condiciones específicas de los efluentes industriales. Una vez determinadas las condiciones de operación óptimas, se realizarán ensayos en plantas piloto con el fin de confirmar los resultados obtenidos mediante las técnicas de caracterización y determinar el grado de recuperación y coste energético asociado a los procesos electrodialíticos de tratamiento de efluentes industriales. / Martí Calatayud, MC. (2014). STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46004 / Premios Extraordinarios de tesis doctorales
92

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
93

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
94

Mathematical modelling of primary alkaline batteries

Johansen, Jonathan Frederick January 2007 (has links)
Three mathematical models, two of primary alkaline battery cathode discharge, and one of primary alkaline battery discharge, are developed, presented, solved and investigated in this thesis. The primary aim of this work is to improve our understanding of the complex, interrelated and nonlinear processes that occur within primary alkaline batteries during discharge. We use perturbation techniques and Laplace transforms to analyse and simplify an existing model of primary alkaline battery cathode under galvanostatic discharge. The process highlights key phenomena, and removes those phenomena that have very little effect on discharge from the model. We find that electrolyte variation within Electrolytic Manganese Dioxide (EMD) particles is negligible, but proton diffusion within EMD crystals is important. The simplification process results in a significant reduction in the number of model equations, and greatly decreases the computational overhead of the numerical simulation software. In addition, the model results based on this simplified framework compare well with available experimental data. The second model of the primary alkaline battery cathode discharge simulates step potential electrochemical spectroscopy discharges, and is used to improve our understanding of the multi-reaction nature of the reduction of EMD. We find that a single-reaction framework is able to simulate multi-reaction behaviour through the use of a nonlinear ion-ion interaction term. The third model simulates the full primary alkaline battery system, and accounts for the precipitation of zinc oxide within the separator (and other regions), and subsequent internal short circuit through this phase. It was found that an internal short circuit is created at the beginning of discharge, and this self-discharge may be exacerbated by discharging the cell intermittently. We find that using a thicker separator paper is a very effective way of minimising self-discharge behaviour. The equations describing the three models are solved numerically in MATLABR, using three pieces of numerical simulation software. They provide a flexible and powerful set of primary alkaline battery discharge prediction tools, that leverage the simplified model framework, allowing them to be easily run on a desktop PC.

Page generated in 0.0709 seconds