Spelling suggestions: "subject:"curvature"" "subject:"urvature""
231 |
Second order semiclassical theory of Bloch electrons in uniform electromagnetic fieldsGao, Yang 1987- 07 November 2014 (has links)
Berry curvature appears in the semi-classical theory of Bloch electrons already to first order in electromagnetic fields, resulting in profound modification of the carrier velocity and phase space density of states. Here we derive the equations of motion for the physical position and crystal momentum to second order in the fields. The dynamics still has a Hamiltonian structure, albeit with noncanonical Poisson brackets between the physical variables. We are able to expand both the carrier energy and the Poisson brackets to second order in the fields with terms of clear physical meaning. To demonstrate the utility of our theory, we obtain with much ease the electromagnetic response and orbital magnetic susceptibility. / text
|
232 |
Local gradient estimate for porous medium and fast diffusion equations by Martingale methodZhang, Zichen January 2014 (has links)
This thesis focuses on a certain type of nonlinear parabolic partial differential equations, i.e. PME and FDE. Chapter 1 consists of a survey on results related to PME and FDE, and a short review on some works about deriving gradient estimates in probabilistic ways. In Chapter 2 we estimate gradient on space variables of solutions to the heat equation on Euclidean space. The main idea is to construct two semimartingales by letting the solution and its gradient running backward on the path space of a diffusion process. Estimates derived from decompositions of those two semimartingales are then combined to give rise to an upper bound on gradient that only involves the maximum of the initial data and time variable. In particular, it is independent of the dimension. In Chapter 3 we carry the idea in Chapter 2 onto the study of positive solutions to PME or FDE, and obtained a similar type of bound on |∇u| for local solutions to PME or FDE on Euclidean space. In existing literature there have always been constraints on m. By considering a more general form of transformation on u and introducing a family of equivalent measures on path space, we add more flexibility to our method. Thus our result is valid for a larger range of m. For global solutions, when m violates our constraint, we need two-sided bound on u to control |∇u|. In Chapter 4 we utilize maximum principle to derive Li-Yau type gradient estimate for PME on a compact Riemannian manifold with Ricci curvature bounded from below. Our result is able to yield a Harnack inequality possessing the right order in time variable when the lower bound of Ricci curvature is negative.
|
233 |
Generalized Lagrangian mean curvature flow in almost Calabi-Yau manifoldsBehrndt, Tapio January 2011 (has links)
In this work we study two problems about parabolic partial differential equations on Riemannian manifolds with conical singularities. The first problem we are concerned with is the existence and regularity of solutions to the Cauchy problem for the inhomogeneous heat equation on compact Riemannian manifolds with conical singularities. By introducing so called weighted Hölder and Sobolev spaces with discrete asymptotics, we provide a complete existence and regularity theory for the inhomogeneous heat equation on compact Riemannian manifolds with conical singularities. The second problem we study is the short time existence problem for the generalized Lagrangian mean curvature flow in almost Calabi-Yau manifolds, when the initial Lagrangian submanifold has isolated conical singularities that are modelled on stable special Lagrangian cones. First we use Lagrangian neighbourhood theorems for Lagrangian submanifolds with conical singularities to integrate the generalized Lagrangian mean curvature flow to a nonlinear parabolic equation of functions, and then, using the existence and regularity theory for the heat equation, we prove short time existence of the generalized Lagrangian mean curvature flow with isolated conical singularities by letting the conical singularities move around in the ambient space and the model cones to rotate by unitary transformations.
|
234 |
Asymétrie et courbures de la clavicule chez l'humain et les grands singesRicher, Claude January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
235 |
Einstein's Equations in Vacuum Spacetimes with Two Spacelinke Killing Vectors Using Affine Projection Tensor GeometryLawrence, Miles D. 01 January 1994 (has links)
Einstein's equations in vacuum spacetimes with two spacelike killing vectors are explored using affine projection tensor geometry. By doing a semi-conformal transformation on the metric, a new "fiducial" geometry is constructed using a projection tensor fields. This fiducial geometry provides coordinate independent information about the underlying structure of the spacetime without the use of an explicit form of the metric tensor.
|
236 |
Finite element methods for surface problemsCenanovic, Mirza January 2017 (has links)
The purpose of this thesis is to further develop numerical methods for solving surface problems by utilizing tangential calculus and the trace finite element method. Direct computation on the surface is possible by the use of tangential calculus, in contrast to the classical approach of mapping 2D parametric surfaces to 3D surfaces by means of differential geometry operators. Using tangential calculus, the problem formulation is only dependent on the position and normal vectors of the 3D surface. Tangential calculus thus enables a clean, simple and inexpensive formulation and implementation of finite element methods for surface problems. Meshing techniques are greatly simplified from the end-user perspective by utilizing an unfitted finite element method called the Trace Finite Element Method, in which the basic idea is to embed the surface in a higher dimensional mesh and use the shape functions of this background mesh for the discretization of the partial differential equation. This method makes it possible to model surfaces implicitly and solve surface problems without the need for expensive meshing/re-meshing techniques especially for moving surfaces or surfaces embedded in 3D solids, so called embedded interface problems. Using these two approaches, numerical methods for solving three surface problems are proposed: 1) minimal surface problems, in which the form that minimizes the mean curvature was computed by iterative update of a level-set function discretized using TraceFEM and driven by advection, for which the velocity field was given by the mean curvature flow, 2) elastic membrane problems discretized using linear and higher order TraceFEM, which makes it straightforward to embed complex geometries of membrane models into an elastic bulk for reinforcement and 3) stabilized, accurate vertex normal and mean curvature estimation with local refinement on triangulated surfaces. In this thesis the basics of the two main approaches are presented, some aspects such as stabilization and surface reconstruction are further developed, evaluated and numerically analyzed, details on implementations are provided and the current state of work is presented.
|
237 |
Exponenciální třídy a jejich význam pro statistickou inferenci / Exponenciální třídy a jejich význam pro statistickou inferenciMoneer Borham Abdel-Maksoud, Sally January 2011 (has links)
This diploma thesis provides an evaluation of Exponential families of distributions which has a special position in mathematical statistics. Diploma will learn the basic concepts and facts associated with the distribution of exponential type. Especially with focusing on the advantages of exponential families in classical parametric statistics, thus in theory of estimation and hypothesis testing. Emphasis will be placed on one-parameter and multi-parameters systems.
|
238 |
Exponenciální třídy a jejich význam pro statistickou inferenci / Exponenciální třídy a jejich význam pro statistickou inferenciMoneer Borham Abdel-Maksoud, Sally January 2011 (has links)
Title: Exponential families in statistical inference Author: Sally Abdel-Maksoud Department: Department of Probability and Mathematical Statistics Supervisor: doc. RNDr. Daniel Hlubinka, Ph.D. Supervisor's e-mail address: Daniel.Hlubinka@mff.cuni.cz Abstract: This diploma thesis provides an evaluation of Exponential families of distributions which has a special position in mathematical statistic including appropriate properties for estimation of population parameters, hypothesis testing and other inference problems. Diploma will introduce the basic concepts and facts associated with the distribution of exponential type especially with focusing on the advantages of exponential families in classical parametric statistics, thus in theory of estimation and hypothesis testing. Emphasis will be placed on one-parameter and multi- parameters systems. It also exposes an important concepts about the curvature of a statistical problem including the curvature in exponential families. We will define a quantity that measure how nearly "exponential" the families are. This quantity is said to be the statistical curvature of the family. We will show that the family with a small curvature enjoy the good properties of exponential families Moreover, the properties of the curvature, hypotheses testing and some...
|
239 |
Curling dynamics of naturally curved surfaces : axisymmetric bio-membranes and elastic ribbons / Dynamique d'enroulement de surfaces naturellement courbées : bio-membranes axisymétriques et rubans élastiquesAlbarrán Arriagada, Octavio Eduardo 20 December 2013 (has links)
La déformation de matériaux élastique dont l'une au moins des dimensions est petite apparaît dans un grand nombre de structures naturelles ou artificielles pour lesquelles une courbure spontanée est présente. Dans ces travaux de thèse, nous couplons plusieurs approches théoriques à des expériences macroscopiques sur des rubans élastiques afin de comprendre la dynamique d'enroulement de biomembranes ouvertes d'un trou. La motivation est issue d'observations récentes d'enroulements obtenues au cours de la sortie de parasites de la Malaria de globules rouges infectés, et de l'explosion de vésicules polymère. Dans une première partie, nous étudions théoriquement la stabilité d'un pore et la propagation de l'enroulement sur une biomembrane sphérique ouverte. Nous modélisons de façon géométrique l'enroulement toroïdal de la membrane par une spirale d'Archimède de révolution et décentrée. Avec cette hypothèse, nous montrons que la stabilité du pore vis-à-vis de l'enroulement dépend fortement de la tension de ligne et du cisaillement et nous discutons ces résultats dans le cadre de l'enroulement de membranes MIRBCs. De plus, en prenant en compte les différentes sources de dissipation, nous obtenons un très bon accord entre les données expérimentales obtenues pour les MIRBCs et la dynamique d'enroulement obtenue par le calcul. Notre approche montre en particulier que la dissipation dans la membrane due à la redistribution de la matière durant l'enroulement domine sur la dissipation visqueuse dans le milieu.Cependant, la complexité de la géométrie sphérique, ainsi que le nombre limité d'observations microscopiques à l'échelle de la membrane sont une entrave au développement de modèles plus détaillés qui permettraient de décrire complètement le couplage entre écoulement et déformation. Nous avons donc étudié dans une seconde partie la déformation d'enroulement dans le cas de rubans élastiques ayant une courbure spontanée dans différents milieux visqueux et pour différentes conditions élastiques. A grands nombres de Reynolds, en raison de la localisation de la courbure pour les rubans au cours de la propagation du front d'enroulement le long du matériau, nous montrons que l'enroulement atteint rapidement une vitesse de propagation constante. Dans ce régime, le ruban s'enroule sur lui-même de façon compacte, sur un cylindre dont la taille est prévue à partir de la solution de l'onde stationnaire pour l'Elastica. A faible nombre de Reynolds, cependant, se rapprochant des conditions d'enroulement d'une membrane microscopique, nous mettons en évidence l'influence des forces de lubrification sur la nature non-compacte de l'enroulement. La taille globale de la spirale de ruban augmente dans le temps conduisant à une diminution de la puissance élastique libérée et donc à une diminution de la vitesse. Nous discutons dans quelle mesure ces résultats peuvent faire avancer la modélisation de l'enroulement dans les MIRBCs et les vésicules polymère. / Curling deformation of thin elastic surfaces appears in numerous natural and man-made structures where a spontaneous curvature is present. In this thesis, we couple theoretical approaches and macroscopic experiments on elastic ribbons to understand the dynamics of curling of opened bio-membranes, motivated by the need to better understand recent microscopic observations during egress of Malaria infected red blood cells (MIRBC) and bursting of artificial polymersomes.In a first part, we study theoretically pore stability and curling propagation of an initially opened spherical bio-membrane. We model geometrically curling deformation as the revolution of a decentered Archimedean spiral, leading to a prescribed toroidal wrapping of the membrane. In this configuration, we show how the stability of a pore to curling depends strongly on both line-tension and shear elasticity and we discuss these results in relation to the curling of MIRBCs membranes. Moreover, taking into account viscous dissipations, the consequent dynamics we calculate agrees quantitatively well with experimental data obtained during opening of MIRBCs. Our approach shows in particular how the membrane dissipation resulting from the surface redistribution dominates curling dynamics over outer viscous dissipation.However, the complexity of the spherical geometry and the lack of detailed images in microscopic observations hamper the development of more accurate models where the coupling between flow and deformation is fully understood. Subsequently, we study in a second part the curling deformation of macroscopic naturally curved elastic ribbons in different viscous media and elastic conditions. At high Reynolds numbers, due to the tendency of ribbons to localize bending deformations when a curling front travels down the material, we show that curling reaches rapidly a constant propagating velocity. In this regime, the ribbon wraps itself into a compact roll whose size is predicted through the solitary wave solution of the associated Elastica. At low Reynolds numbers, however, closer to the hydrodynamic conditions of curling in microscopic membranes, we show that the strong lubrication forces induce a non-compact curling. The overall size of the spiraling ribbon increases in time leading to a temporal decrease of the released elastic power and therefore a consequent decrease in velocity. We discuss how such discovery sheds a new light on the modeling of curling in MIRBCs and polymersomes.
|
240 |
Fabrication of wavy type porous triple-layer SC-SOFC via in-situ observation of curvature evolution during co-sinteringChoi, Indae January 2015 (has links)
Wavy type Single Chamber Solid Oxide Fuel Cells (SC-SOFCs) have been shown to be conducive to improving the effective electrochemical reaction area contributing to higher performance, compared with planar type SC-SOFCs of the same diameter. This study presents a fabrication process for wavy type SC-SOFCs with a single fabrication step via co-sintering of a triple-layer structure. The monitoring and observation of the curvature evolution of bi- and triple-layer structures during co-sintering has resulted in an improved process with reduced manufacturing time and effort, as regards the co-sintering process for multi-layer structures. Investigation using in-situ monitoring helps different shrinkage behaviours of each porous layer to minimise mismatched stresses along with avoidance of severe warping and cracking. In the co-sintering of the multi-layer structures, the induced in-plane stresses contribute to curvature evolution in the structure, which can be utilised in the design of a curved multi-layer structure via the co-sintering process. For intermediate temperature SOFCs, the materials used are NiO/CGO for anode; CGO for electrolyte; and LSCF for cathode. These materials are tape-casted with 20μm thickness and assembled for bi- and triple-layer structures by hot pressing. Sintering mismatch stresses have been analysed in bi-layer structures, consisting of NiO/CGO-CGO and CGO-LSCF. The maximum sintering mismatch stress was calculated at interface of bi-layer structure in the top layer. In order to achieve the desired wavy type triple-layer structure, flexible green layers of each component were stacked up and laid on alumina rods to support the curvature during the process. In-situ observation, to monitor the shrinkage of each material and the curvature evolution of the structures, was performed using a long focus microscope (Infinity K-2). With these values, the main factors such as viscosity, shrinkage rate of each material, and curvature rate are investigated to determine the sintering mismatch stresses. This enables the prediction of curvature for triple-layer structure and the prediction is validated by in-situ monitoring of the triple-layer structure co-sintering process. Zero-deflection condition is confirmed to maintain initial shape during co-sintering and helps to minimise the development of undesired curvature in the triple-layer structure. Performance testing of the wavy cell was carried out in a methane-air mixture (CH4:O2 =1:1). In comparison with a planar SC-SOFC, it showed higher OCV which might be attributed to not only macro deformation, but also microstructural distribution affecting the effective gas diffusion paths and electrochemical active sites.
|
Page generated in 0.0519 seconds