• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation approaches and methodologies for multi-physic comprehensions of titanium alloy (Ti-6Al-4V) CUTTING

Zhang, Yancheng 29 September 2011 (has links) (PDF)
The objective of this study is to model material removal with cutting tool in the case of the machining of Titanium alloy (Ti-6Al-4V) and to bring a multi-physic comprehension of chip formation and the tool/workpiece interaction by adopting finite element approaches and methodologies. For that, the present contribution begins by a macroscopic modeling of the orthogonal cutting process. The cut material behavior considered is supposed based on JC law. Moreover, in order to simulate properly the chip genesis, the material fracture energy concept is adopted for controlling the material damage evolution. This allows capturing the shear strain localization and consequently the chip segmentation for a given set of cutting parameters. The frictional contact model considers the influence of temperature on the limiting shear stress at the tool/chip interface. As a result, this reliable model has the capability to simulate the cutting process even with high coefficient of friction and with large cutting edge radius. The parametric study carried out by referring to this model shows a very interesting corroboration with experimental results. In a second step, the present research work presents a material microstructure-level cutting model (MML cutting model) for cutting simulation. The crystal plasticity theory is adopted for modeling the cutting of the Titanium alloy Ti-6Al-4V in orthogonal case. In this model, the grains of the studied material are explicitly considered, and their orientation angles and slip system strength anisotropy are considered as the main source of the microstructure heterogeneity in the cutting material. To simulate the material degradation process, the continuum intra-granular damage and discrete cohesive zone inter-granular damage models are developed, wherein the zero thickness cohesive elements are implemented to simulate the bond between grain interfaces. The material model is validated by a comparison of compression tests from literature. Finally, simulation results demonstrate the possibility to capture the influence of the microstructure on the material removal in terms of chip formation. It is demonstrated that the grain orientation angle plays an important role for the chip segmentation and its periodicity during the cutting process. This certainly can affect the evolution of the cutting force. Additionally, the surface integrity is discussed based on the MML cutting model for different cutting speeds and feed rates. Indeed, a parametric study shows that the surface integrity is seriously affected by the machining parameters, and the affected region is limited within three layer grains for the present MML cutting model.
2

Etude de la découpe de matériau en feuille souple par lame vibrante / Experimental study on cutting flexible sheet material using an oscillating knife

Cosson-Coche, Quentin 06 March 2017 (has links)
De par la grande diversité de tissus existants, tous avec des caractéristiques mécaniques différentes, il n’y a que peu d’études portant sur la découpe de tissus textiles.Cette thèse s’intéresse à la découpe de textile en multi-plis par l’action d’une lame oscillante dans un contexte industriel.Dans cette étude, une machine de découpe industrielle est équipée de différents capteurs afin de pouvoir mesurer l’influence des efforts de coupe sur la qualité des pièces découpées. En utilisant cet équipement, il a été possible de contrôler les efforts de coupe pendant toute la durée d’une coupe rectiligne.Enfin, un modèle physique de ces efforts est proposé en prenant en compte différents paramètres comme la géométrie de la lame, les propriétés du matériau découpé et les différents paramètres de coupe. / Due to the wide variety of fabrics, all with different mechanical characteristics, there are few studies dealing with the question of cutting fabrics.In this thesis, we model the multi-ply cutting process using a reciprocating knife in an industrial context.In this study, a textile cutting machine is instrumented with different sensors, to measure the influence of cutting forces on the quality of the resulting profiles. Using this equipment, cutting forces can be analyzed experimentally while the fabric is being cut along a straight line.Next, a model of the physical phenomena of these forces is proposed, taking different parameters into account such as the geometry of the knife, the properties of the material being cut and the parameters of the cut.
3

Finite element modeling of the orthogonal metal cutting process : modeling the effects of coefficient of friction and tool holding structure on cutting forces and chip thickness

Tanu Halim, Silvie Maria January 2008 (has links)
N/A / Thesis / Master of Applied Science (MASc)
4

Theoretical and experimental studies of a single tooth milling process

Werner, Mathias January 2012 (has links)
The industrial development of metal cutting processes in gear manufacturing aims at continuously increasing productivity, including increased tool reliability. Basically, the parameters that have an influence on the cutting processes should be known and possible to control. Gear manufacturing is highly important for the automotive industry. The prevalent manufacturing method is gear hobbing with hobs consisting of solid Powder Metallurgical High Speed Steel (PM HSS) with Physical Vapor Deposited (PVD) coatings. The hob teeth have to be reconditioned before wear reaches such levels that the gear quality becomes impaired. Such wear often results in a total breakdown of the tool. One crucial reason for this is that hobbing processes for the present often lack reliability; which makes it difficult for the gear manufacturers to predict the tool wear on the hob teeth and decide when the tool should be replaced in order to avoid severe damages. A consequence of catastrophic tool wear is that it leads to an instantaneously changed geometry of the cutting edge, which in turn implies that the machined gears do not comply with the stipulated properties on the machined gear products. A single tooth milling test (STMT) with tools of PM-HSS in a conventional milling machine has been developed in this research project, aiming at characterizing the effect of tool preparation on the type of wear mechanism. The experience and conclusions from these tests may probably be transferred to real PM-HSS hob tooling (HT). The advantages of such a test, compared to a real gear hob test, are primarily the cost reductions and time saving aspects with respect to both the design and the manufacturing of the cutting teeth The research presented in this thesis is based on experimental investigations and theoretical studies of significant parameters, i.e. the surface roughness and edge rounding, contributing to the robust and reliable design of a PM-HSS cutting tool. The research work has in addition to, the development of the milling test method, also comprised development of measuring methods and a simulation model based on the Finite Element Model (FEM). / <p>QC 20121105</p>
5

Numerical simulation approaches and methodologies for multi-physic comprehensions of titanium alloy (Ti–6Al–4V) CUTTING / Approches numériques et méthodologies pour une compréhension multi-physiques de la coupe de l'alliage de titane (Ti–6Al–4V)

Zhang, Yancheng 29 September 2011 (has links)
Ce travail de thèse est focalisé sur l’établissement d’un modèle de coupe orthogonale simulant l’usinage de l’alliage de Titane (Ti–6Al–4V). L’objectif principal est de contribuer à des approches et des méthodologies numériques permettant la modélisation de la formation du copeau de ce type d’alliage et l’amélioration de la compréhension des phénomènes multi-physiques induits par l’enlèvement de matière et qui découle de l’interaction outil-matière. Pour se faire, ce travail de recherche commence par la présentation d’une méthodologie macroscopique et robuste permettant d’établir un modèle de coupe en adoptant la loi de comportement phénoménologique de Johnson et Cook. L’une des améliorations apportés dans ce modèle consiste à adopter le critère de l’énergie de rupture pour contrôler l’évolution de l’endommagement de la matière et pourvoir par conséquent simuler pertinemment la genèse du copeau. Cela a permis de capturer la localisation de la déformation maximale par cisaillement et par la suite de dimensionner les formes caractéristiques liées au phénomène de segmentation du copeau selon les conditions de coupe adoptées. Le modèle de frottement à l’interface outil-matière découpée a également été affiné en intégrant une contrainte de cisaillement limite à l’interface copeau-outil. L’effet de la température sur cette contrainte limite a également été considéré et implémenté dans une routine utilisateur. Cela a permis de modéliser la formation du copeau même sous des conditions de frottement agressives et avec des rayons d’acuité d’arête de coupe élevés. L’étude paramétrique ainsi effectuée montre une très bonne concordance avec les résultats expérimentaux. Dans un second temps un modèle qui peut-être qualifié de multi-echelles a été élaboré. Ce modèle de coupe tient compte de la microstructure du matériau à découper. Il est basé sur la théorie de la plasticité cristalline pour simuler la coupe orthogonale de l’alliage de Titane Ti–6Al–4V. Dans cette approche, les grains de la matière traitée sont présentés explicitement dans le maillage avec des formes hexagonales caractérisées par différentes orientations et systèmes de glissement. Dans ce cas d’étude le processus de dégradation de la matière sous différentes sollicitations thermomécaniques est le résultat de la cœxistence de deux types d’endommagement. En effet, il est supposé une rupture de la matière au niveau des grains qualifiée de dommage intra-granulaire et un dommage éventuel, aux interfaces des grains, qualifié d’inter-granulaire. Ce dernier est simulé par des éléments cohésifs d’épaisseurs nulles traduisant la possibilité de la décohésion des gains de la matière. Ce modèle est validé par des résultats de compression provenant de la littérature. / The objective of this study is to model material removal with cutting tool in the case of the machining of Titanium alloy (Ti–6Al–4V) and to bring a multi-physic comprehension of chip formation and the tool/workpiece interaction by adopting finite element approaches and methodologies. For that, the present contribution begins by a macroscopic modeling of the orthogonal cutting process. The cut material behavior considered is supposed based on JC law. Moreover, in order to simulate properly the chip genesis, the material fracture energy concept is adopted for controlling the material damage evolution. This allows capturing the shear strain localization and consequently the chip segmentation for a given set of cutting parameters. The frictional contact model considers the influence of temperature on the limiting shear stress at the tool/chip interface. As a result, this reliable model has the capability to simulate the cutting process even with high coefficient of friction and with large cutting edge radius. The parametric study carried out by referring to this model shows a very interesting corroboration with experimental results. In a second step, the present research work presents a material microstructure-level cutting model (MML cutting model) for cutting simulation. The crystal plasticity theory is adopted for modeling the cutting of the Titanium alloy Ti–6Al–4V in orthogonal case. In this model, the grains of the studied material are explicitly considered, and their orientation angles and slip system strength anisotropy are considered as the main source of the microstructure heterogeneity in the cutting material. To simulate the material degradation process, the continuum intra-granular damage and discrete cohesive zone inter-granular damage models are developed, wherein the zero thickness cohesive elements are implemented to simulate the bond between grain interfaces. The material model is validated by a comparison of compression tests from literature. Finally, simulation results demonstrate the possibility to capture the influence of the microstructure on the material removal in terms of chip formation. It is demonstrated that the grain orientation angle plays an important role for the chip segmentation and its periodicity during the cutting process. This certainly can affect the evolution of the cutting force. Additionally, the surface integrity is discussed based on the MML cutting model for different cutting speeds and feed rates. Indeed, a parametric study shows that the surface integrity is seriously affected by the machining parameters, and the affected region is limited within three layer grains for the present MML cutting model.

Page generated in 0.0875 seconds