• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Linear Cutwidth and Cyclic Cutwidth of Complete n-Partite Graphs

Creswell, Stephanie A 01 June 2014 (has links)
The cutwidth of different graphs is a topic that has been extensively studied. The basis of this paper is the cutwidth of complete n-partite graphs. While looking at the cutwidth of complete n-partite graphs, we strictly consider the linear embedding and cyclic embedding. The relationship between the linear cutwidth and the cyclic cutwidth is discussed and used throughout multiple proofs of different cases for the cyclic cutwidth. All the known cases for the linear and cyclic cutwidth of complete bipartite, complete tripartite, and complete n-partite graphs are highlighted. The main focus of this paper is to expand on the cyclic cutwidth of complete tripartite graphs. Using the relationship of the linear cutwidth and cyclic cutwidth of any graph, we find a lower bound and an upper bound for the cyclic cutwidth of complete tripartite graph K_(r,r,pr) where r is odd and p is a natural number. Throughout this proof there are two cases that develop, p even and p odd. Within each case we have to consider the cuts of multiple regions to find the maximum cut of the cyclic embedding. Once all regions within each case are considered, we discover that the upper and lower bounds are equivalent. This discovery of the cyclic cutwidth of complete tripartite graph K_(r,r,pr) where r is odd and p is a natural number results in getting one step closer to finding the cyclic cutwidth of any complete tripartite graph K_(r,s,t).
2

Updating the Vertex Separation of a Dynamically Changing Tree

Olsar, Peter January 2004 (has links)
This thesis presents several algorithms that update the vertex separation of a tree after the tree is modified; the vertex separation of a graph measures the largest number of vertices to the left of and including a vertex that are adjacent to vertices to the right of the vertex, when the vertices in the graph are arranged in the best possible linear ordering. Vertex separation was introduced by Lipton and Tarjan and has since been applied mainly in VLSI design. The tree is modified by either attaching another tree or removing a subtree. The first algorithm handles the special case when another tree is attached to the root, and the second algorithm updates the vertex separation after a subtree of the root is removed. The last two algorithms solve the more general problem when subtrees are attached to or removed from arbitrary vertices; they have good running time performance only in the amortized sense. The running time of all our algorithms is sublinear in the number of vertices in the tree, assuming certain information is precomputed for the tree. This improves upon current algorithms by Skodinis and Ellis, Sudborough, and Turner, both of which have linear running time for this problem. Lower and upper bounds on the vertex separation of a general graph are also derived. Furthermore, analogous bounds are presented for the cutwidth of a general graph, where the cutwidth of a graph equals the maximum number of edges that cross over a vertex, when the vertices in the graph are arranged in the best possible linear ordering.
3

Updating the Vertex Separation of a Dynamically Changing Tree

Olsar, Peter January 2004 (has links)
This thesis presents several algorithms that update the vertex separation of a tree after the tree is modified; the vertex separation of a graph measures the largest number of vertices to the left of and including a vertex that are adjacent to vertices to the right of the vertex, when the vertices in the graph are arranged in the best possible linear ordering. Vertex separation was introduced by Lipton and Tarjan and has since been applied mainly in VLSI design. The tree is modified by either attaching another tree or removing a subtree. The first algorithm handles the special case when another tree is attached to the root, and the second algorithm updates the vertex separation after a subtree of the root is removed. The last two algorithms solve the more general problem when subtrees are attached to or removed from arbitrary vertices; they have good running time performance only in the amortized sense. The running time of all our algorithms is sublinear in the number of vertices in the tree, assuming certain information is precomputed for the tree. This improves upon current algorithms by Skodinis and Ellis, Sudborough, and Turner, both of which have linear running time for this problem. Lower and upper bounds on the vertex separation of a general graph are also derived. Furthermore, analogous bounds are presented for the cutwidth of a general graph, where the cutwidth of a graph equals the maximum number of edges that cross over a vertex, when the vertices in the graph are arranged in the best possible linear ordering.

Page generated in 0.02 seconds