Spelling suggestions: "subject:"cuve d’électrolyte"" "subject:"cuve d’d'électrolyse""
1 |
Développement de mesures non destructives, par ondes ultrasonores, d'épaisseurs de fronts de solidification dans les réacteurs métallurgiquesFloquet, Jimmy January 2013 (has links)
Dans les cuves d'électrolyse d'aluminium, le milieu de réaction très corrosif attaque les parois de la cuve, ce qui diminue leur durée de vie et augmente les coûts de production. Le talus, qui se forme sous l'effet des pertes de chaleur qui maintiennent un équilibre thermique dans la cuve, sert de protection naturelle à la cuve. Son épaisseur doit être contrôlée pour maximiser cet effet. Advenant la résorption non voulue de ce talus, les dégâts générés peuvent s'évaluer à plusieurs centaines de milliers de dollars par cuve. Aussi, l'objectif est de développer une mesure ultrasonore de l'épaisseur du talus, car elle serait non intrusive et non destructive. La précision attendue est de l'ordre du centimètre pour des mesures d'épaisseurs comprenant 2 matériaux, allant de 5 à 20 cm. Cette précision est le facteur clé permettant aux industriels de contrôler l'épaisseur du talus de manière efficace (maximiser la protection des parois tout en maximisant l'efficacité énergétique du procédé), par l'ajout d'un flux thermique. Cependant, l'efficacité d'une mesure ultrasonore dans cet environnement hostile reste à démontrer. Les travaux préliminaires ont permis de sélectionner un transducteur ultrasonore à contact ayant la capacité à résister aux conditions de mesure (hautes températures, matériaux non caractérisés...). Différentes mesures à froid (traité par analyse temps-fréquence) ont permis d'évaluer la vitesse de propagation des ondes dans le matériau de la cuve en graphite et de la cryolite, démontrant la possibilité d'extraire l'information pertinente d'épaisseur du talus in fine. Fort de cette phase de caractérisation des matériaux sur la réponse acoustique des matériaux, les travaux à venir ont été réalisés sur un modèle réduit de la cuve. Le montage expérimental, un four évoluant à 1050 °C, instrumenté d'une multitude de capteurs thermique, permettra une comparaison de la mesure intrusive LVDT à celle du transducteur, dans des conditions proches de la mesure industrielle.
|
2 |
Mesure et modélisation dynamique de la couche de gelée dans un réacteur métallurgiqueBertrand, Clément January 2014 (has links)
Résumé : La mesure des profils transitoires et de la vitesse de solidification sont deux données importantes pour le contrôle de procédés industriels impliquant un changement de phase. Dans le cas de l’électrolyse de l’aluminium, ce processus de solidification assure la protection du système et influe sur la performance énergétique du procédé de fabrication. Malheureusement, ces données se révèlent, dans la plupart des cas, difficilement accessibles. Ce travail de thèse porte sur le développement de nouveaux outils permettant l’étude et la caractérisation de la solidification de matériaux à changement de phase et à haute température. L’objectif est de développer un système de mesure du front de solidification de matériaux à changement de phase non destructif et ne perturbant pas le milieu de mesure, tout en assurant une précision et une réponse suffisamment rapide pour exploiter de nouvelles stratégies de contrôle dans les cuves d’électrolyse. Ce travail couple une étude expérimentale fondamentale de la solidification de la cryolithe avec une modélisation numérique de phénomène de changement de phase solide-liquide dans des conditions proches du fonctionnement de cuves d’électrolyse. // Abstract : Measurement of transient solidification fronts and of solidification rate are two important
data for controlling industrial processes involving a solid-liquid phase change. In the case
of aluminium electrolysis, this solidification process protects the system and affects the
energy performance of the manufacturing process. Unfortunately, these data are not easy
to obtain in most cases. This thesis focuses on the development of new tools for the study
and on the solidification characterization of phase change materials at high temperature.
The goal is to develop a nondestructive solidification front measurement system for phase
change materials without disturbing the measurement medium, while ensuring accuracy
and a fast enough response time to exploit new control strategies in electrolysis cells.
This work couples a fundamental experimental study of the cryolite solidification with
numerical modeling of solid-liquid phase change phenomenon under conditions close to
those during normal operation of electrolytic cells.
|
Page generated in 0.0519 seconds