• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of the Aging Properties of Novel Cyanate Ester Thermosets and the Subsequent Evaluation of the Material under Application Conditions

Hahn, Daniel Robert 30 April 2004 (has links)
Cyanate ester thermosetting resins are a novel family of materials for high technology and aerospace applications. The high glass transition temperatures available from cured cyanate ester networks and subsequently, their resistances to corrosive materials make these resins attractive for harsh environmental applications. These features of cyanate ester resins presented a threefold opportunity for investigation, namely: 1) establish a characterization technique for the long term mechanical properties of the cured resins, 2) develop a method for determining the effect of physical and chemical aging on these mechanical properties, and 3) evaluate the AroCy® B-10 cyanate ester resin from Ciba-Geigy for use in applications where temperatures could easily reach 177°C (300°F). Dynamic mechanical analysis used in a step isothermal mode was developed to characterize the mechanical properties of the cured resin and a family of isothermal modulus curves was established. These data were then shifted, following WLF theory, to create a master curve of storage modulus with respect to measurement frequency. The resultant master curves allowed the prediction of long term mechanical behavior of the resin networks via short duration, accelerated experimental tests. The test methodology and experimental procedures were especially useful in determining the effects of physical and chemical aging on the mechanical properties of the resin. Cured resins were aged in oxidative and inert atmospheres (air and nitrogen, respectively) for varying time and temperature to study the suitability of cyanate ester resins for harsh environmental applications. After aging, the samples were tested by DMA, DSC and TGA and master curves of their mechanical behavior were generated. The results were then grouped to form a family of master curves as a function of atmosphere, time and temperature. This approach allowed for the separation of the competing chemical and physical degradation processes and established the practical application conditions for this class of cross-linked polymers. Using the techniques established above, a model cyanate ester resin was selected based upon its chemical simplicity and availability. AroCy® B-10 cyanate ester resin manufactured commercially by Ciba-Geigy was evaluated for its application where temperatures could easily reach 177C. While this material was clearly unacceptable for the stated application conditions (especially in an oxygen rich atmosphere), its investigation provided experimental confirmation of the techniques developed. The test procedures and performance evaluation techniques described allow for the systematic assessment of not only the cyanate ester class of networking polymers, but any glass forming material, and a separation methodology for their concomitant chemical and physical degradation pathways. / Ph. D.
2

Analysis of Cyanate Ester Resins and Graphite Fabric for Use in Resin Film Infusion Processing

Myslinski, Paul Joseph 23 December 1997 (has links)
The objective of this investigation was to characterize two cyanate ester resins and a eight harness satin (8HS) graphite fabric for use in resin film infusion (RFI) processing. Two cyanate ester resin systems were characterized to determine their cure-kinetics, and viscosities during cure. A 8HS graphite fabric was tested in compaction and through the thickness permeability. A one-dimensional, through the thickness, flow and cure computer simulation was run. The resin cure-kinetics models predicted the curing behavior of the resins as functions of time, temperature, and degree of cure. The proposed viscosity models determined the resin viscosity as a function of temperature and degree of cure. The 8HS graphite fabric was tested in compaction and through the thickness permeability to determine the effect of compaction pressure on fiber volume fraction and in turn on through the thickness permeability. The one-dimensional RFI flow and cure simulation combined the cure-kinetics and viscosity models of the resins with the characteristics of the graphite fabric and determined resin infiltration and cure times. The proposed cure-kinetics and viscosity models were more than adequate in modeling the cure and flow behavior of the cyanate ester resin systems. Power law curve fits accurately represented the compaction and through the thickness permeability of the 8HS graphite fabric. Finally, the one-dimensional RFI flow and cure simulation showed that resin viscosity was the major influence on the infiltration times. / Master of Science
3

Processing of toughened cyanate ester matrix composites

Rau, Anand V. 06 June 2008 (has links)
This investigation explored the feasibility of recently developed toughened cyanate ester networks as candidate materials for high performance composite matrix applications. The resin investigated was a Bisphenol-A cyanate ester toughened with hydroxy functionalized phenolphthalein based amorphous poly(arylene ether sulfone). The thermoplastic modified toughened networks exhibited improvement in the fracture toughness over the base cyanate ester networks without significant reductions in mechanical properties or glass transition temperature. Void free, unidirectional carbon fiber prepreg was successfully manufactured with the toughened cyanate resin using a solventless hot-melt technique. The resin mass fraction of the prepregs was between 31 and 35%. The carbon fiber, toughened cyanate ester prepreg was fabricated into composite panels for mechanical and physical testing. The cure cycle used to manufacture the composite laminates was developed with the aid of a process simulation model developed by Loos and Springer. In order to accurately simulate the resin curing and flow processes, the cure reaction kinetics and melt viscosity was characterized as a function of temperature and degree of cure and input into the simulation model. The model generated cure cycle was used in the manufacture 8-ply unidirectional and 16-ply quasi-isotropic composite laminates. The manufactured laminates were well consolidated to the specified fiber volume fraction between 59 and 60%. Photomicrographs showed that the laminates are void free, the fiber and resin distribution is uniform and fiber wet-out is very good. Mechanical tests were performed to measure the impact damage resistance and shear properties of the toughened cyanate ester resin composites. The results show improvements in impact damage resistance compared with the commonly used hot-melt epoxy resin composites. The influence of processing on performance was observed from the results of shear tests. Carbon fabric composite panels were manufactured by liquid molding processes (resin transfer molding and resin film infusion), with a series of four toughened cyanate ester resins generated by varying the concentration and the molecular weight of the toughener. The panels were subjected to physical, damage tolerance, and fracture toughness tests. The results of physical testing indicate consistently uniform quality, and the void content was found to be less than 2%. The toughened cyanate ester composites exhibited significantly improved impact damage resistance and tolerance compared with hot-melt epoxy systems. Marked increase in the mode II fracture toughness were observed with an increase in the concentration and the molecular weight of the toughener. / Ph. D.
4

Synthesis and investigation of nanostructured polymer composites based on heterocyclic esters and carbon nanotubes

Bardash, Liubov, Bardash, Liubov 28 September 2011 (has links) (PDF)
The thesis relates to synthesis and investigation of nanostructured polymer composites based on oligomers of cyanate esters of bisphenol a (DCBA) or cyclic butylene terephthalate (CBT) and multiwalled carbon nanotubes (MWCNTS). Catalytic effect of mwcnts in process of DCBA polycyclotrimerization as well as in cbt polymerization has been observed. Significant increase in crystallization temperature of nanocomposites based on polybutylene terephthalate (cPBT) with adding of MWCNTS is observed. The effect of processing method of cpbt/mwcnts nanocomposites on its electrical properties has been found. It has been established that the additional heating of the samples (annealing) at temperatures above melting of cPBT leads to reagglomeration of MWCNTS in the system. It is established that reagglomeration of MWCNTS results in increase of conductivity values of nanocomposites due to formation of percolation pathways of MWCNTS through polymer matrix. In the case of polycyanurate matrix (PCN), it is found that addition of small mwcnts contents (0.03-0.06 weight percents) provides increasing tensile strength by 62-94 percents. It has been found that addition of even 0.01 weight percents of MWCNTS provides significant increase in storage modulus of cPBT matrix. This is explained by effective dispersing of small amount of the nanofiller during in situ synthesis of pcn or cpbt matrix that is confirmed by microscopy techniques. It has been established that the properties of the nanocomposites based on heterocyclic esters and MWCNTS can be varied from isolator to conductor and has low percolation thresholds (0.22 and 0.38 weight percents for cPBT and PCN nanocomposites respectively). The conductivity of samples is particularly stable on a very large range of temperature from 300 to 10 degrees Kelvin that make these materials perspective for practical applications in microelectronics, as parts of aircraft and space constructions.
5

Synthesis and investigation of nanostructured polymer composites based on heterocyclic esters and carbon nanotubes / Synthèse et caractérisation de composites polymères nanostructurés à base d’esters hétérocycliques chargés de nanotubes de carbone

Bardash, Liubov 28 September 2011 (has links)
La thèse concerne les synthèse et caractérisation de composites polymères nanostructurés à base d’esters de cyanates de bisphénol a (DCBA) ou à base d’oligomères cycliques de butylène téréphtalate (CBT) et de nanotubes de carbone multi-parois (MWCNTS). L’effet catalytique des nanotubes de carbone sur la polycyclotrimerisation de DCBA et aussi sur la polymérisation du CBT est observé. L’augmentation de la température de cristallisation a été fixée pour tous les échantillons de nanocomposites à base de polybutylène téréphtalate (cPBT). L’effet de la méthode de mise en forme de cPBT/MWCNTS sur ses propriétés thermiques et électriques a été établi. Il est observé que le traitement thermique additionnel des échantillons (recuit) à des températures inférieures à celle de la fusion du cPBT cause la réagglomération des MWCNTS dans le système. Il est établi que l’ajout de très bas taux de MWCNTS (0.03-0.06 pour cent en masse) dans la matrice de polycyanurate (PCN) augmente les valeurs de résistance à la flexion (64-94 pour cent). De même l’ajout de 0.01 pourcent de MWCNTS en masse dans le CBT augmente considérablement le module d'élasticité des nanocomposites cPBT. Cet effet a été expliqué par la dispersion efficace de cette faible quantité de nanocharges pendant la synthèse in situ de la matrice de cPBT et est confirmée par les clichés en microscopie. Il est déterminé que les propriétés électriques des nanocomposites à base d’esters hétérocycliques et MWCNTS peuvent varier de matériaux isolants aux matériaux conducteurs. Les seuils de percolation des deux systèmes sont très bas (0.22 et 0.38 pourcent pour nanocomposites à base de cPBT et PCN respectivement). La conductivité des composites conducteurs est particulièrement stable sur un large domaine de température ce qui laisse présager des applications intéressantes dans le domaine de la microélectronique et pour des pièces d’avion et de navettes spatiales. / The thesis relates to synthesis and investigation of nanostructured polymer composites based on oligomers of cyanate esters of bisphenol a (DCBA) or cyclic butylene terephthalate (CBT) and multiwalled carbon nanotubes (MWCNTS). Catalytic effect of mwcnts in process of DCBA polycyclotrimerization as well as in cbt polymerization has been observed. Significant increase in crystallization temperature of nanocomposites based on polybutylene terephthalate (cPBT) with adding of MWCNTS is observed. The effect of processing method of cpbt/mwcnts nanocomposites on its electrical properties has been found. It has been established that the additional heating of the samples (annealing) at temperatures above melting of cPBT leads to reagglomeration of MWCNTS in the system. It is established that reagglomeration of MWCNTS results in increase of conductivity values of nanocomposites due to formation of percolation pathways of MWCNTS through polymer matrix. In the case of polycyanurate matrix (PCN), it is found that addition of small mwcnts contents (0.03-0.06 weight percents) provides increasing tensile strength by 62-94 percents. It has been found that addition of even 0.01 weight percents of MWCNTS provides significant increase in storage modulus of cPBT matrix. This is explained by effective dispersing of small amount of the nanofiller during in situ synthesis of pcn or cpbt matrix that is confirmed by microscopy techniques. It has been established that the properties of the nanocomposites based on heterocyclic esters and MWCNTS can be varied from isolator to conductor and has low percolation thresholds (0.22 and 0.38 weight percents for cPBT and PCN nanocomposites respectively). The conductivity of samples is particularly stable on a very large range of temperature from 300 to 10 degrees Kelvin that make these materials perspective for practical applications in microelectronics, as parts of aircraft and space constructions.
6

Studies on the Effects of Carbon Nanotubes on Mechanical Properties of Bisphenol E Cyanate Ester/Epoxy Based Resin Systems and CFRP Composites

Subba Rao, P January 2016 (has links) (PDF)
The search and research for high performance materials for aerospace applications is a continuous evolving process. Among several fibre reinforced polymers, carbon fibre reinforced polymer (CFRP) is well known for its high specific stiffness and strength. Though high modulus and high strength carbon fibre with structural resin systems have currently been established reasonably well and are catering to a wide variety of aerospace structural applications, these properties are generally directional with very high properties along the fibre direction dominated by fibres and low in other directions depending mainly on the resin properties. Thus, there is a need to enhance the mechanical properties of the resin systems for better load transfer and to improve the resin dominated properties like shear strength and properties in directions other than along the fibre. Use of carbon nanotubes (CNTs) with their extraordinary specific stiffness and strength apparently has great potential as an additional reinforcement in resin for development of CNT-CFRP nanocomposites. However, there are several issues that need to be addressed such as compatibility of a particular resin with CNTs, amount of CNTs that can be added, uniform dispersion of these nanotubes, surface treatment and curing process etc., for optimal enhancement of the required properties. Epoxy and cyanate ester resin systems are finding applications in aerospace structures owing to their desirable set of properties. Of these, bisphenol E cyanate ester (BECy) resin of low viscosity with its low moisture absorption, better dimensional stability, and superior mechanical properties can establish itself as potential structural resin system for these applications. BECy in particular has the advantage of being more suitable for out of autoclave manufacturing process such as Vacuum Assisted Resin Transfer Molding (VARTM). Literature shows that, significant work has been carried out by various researchers reporting improvements using CNTs in epoxy resins along with various associated problems. However, studies on effects of addition of CNTs /fCNTs to BECy-CFRP composite system are not well reported. Thus, objective of this work is to study the effects of adding pristine and functionalized CNTs to low viscosity cyanate ester as well as epoxy resin systems. Further, to study the effects on mechanical properties of nanocomposites with carbon fibre reinforcement in these CNT dispersed resin system through a combination of experimental and computational approaches. Multiwall carbon nanotubes (CNTs) without and with different chemical functionalization are chosen to be added to epoxy and BECy resins. The quantity of these CNTs /fCNTs is varied in steps up to 1% by weight. Different methods of mixing such as shear mixing, ultrasonication and combined mixing cycles are implemented to achieve uniform dispersion of these nanotubes in the resin system. Standard test samples are prepared from these mixtures of nanotubes in resin systems to study the variation in mechanical properties. Further, these nanotubes added resin systems are used in fabricating CFRP laminates by VARTM process. Both uni-directional and bi-directional laminates are made with the above modified resin systems with CNTs/fCNTs. Series of experimental investigations are carried out to study various aspects involved in making of nanocomposites and the effects of the same on different mechanical properties of the nanocomposites. Standard specimens are cut out from these laminates to evaluate them for tension, compression, flexure, shear and interlaminar shear strength. The main parameters investigated are the effects of varied quantity of CNTs and functionalized CNTs in the resin mix and in CFRP nanocomposites, effect of different mixing / curing cycles etc. on the mechanical properties of the nanocomposites. The investigations have yielded very interesting and encouraging results to arrive at optimum quantity of CNTs to be added and also the effects of functionalization to achieve enhanced mechanical properties. In addition, correlation of mechanical property enhancements with failure mechanisms, dispersion behaviour and participation of CNTs / fCNTs in load transfer are explained with the aid of scanning electron microscope images. Computational studies are carried out through atomistic models using computational tools to estimate the mechanical properties, understand and validate the effects of various parameters studied through series of experimental investigations. An atomistic model is built taking into consideration the nanoscale effects of the single wall carbon nanotubes (SWCNTs) and its reinforcement in the BECy resin. Using these atomistic models, mechanical properties of individual SWCNT, BECy polymer resin, polymer with different quantities of added SWCNT, and the CFRP laminates with improved resin are computed. As the interaction of CNT with the polymer is only at the outermost layer and the mechanical properties of either MWCNTs or SWCNTs are too high compared to resin systems, it is not expected to have any difference in the final outcome whether it is MWCNT or SWCNT. Hence, only SWCNTs are considered in computational studies as it helps in reducing the complexity of atomistic models and computational time when coupled with polymer resin. This is valid even for functionalized CNT as functionalization is also a surface phenomenon. To start with, the mechanical behaviour of SWCNT is studied using molecular mechanics approach. Molecular mechanics based finite element analysis is adopted to evaluate the mechanical properties of armchair, zigzag and chiral SWCNT of different diameters. Three different types of atomic bonds, i.e., carbon-carbon covalent bond and two types of carbon-carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness values are assigned to spring elements in the finite element model of the SWCNT. The importance of inclusion of Lennard-Jones interactions is highlighted in this study. Effect of these non-bonded interactions is studied by making the numerical stiffness of these bonds to negligible levels and found that they significantly reduce the mechanical properties. The effect of non-bonded Lennard-Jones atomic interactions (van der Waal interactions) considered here is a novelty in this work which has not been considered in previous research works. The finite element model of the SWCNT is constructed, appropriate boundary conditions are applied and the behaviour of mechanical properties of SWCNT is studied. It is found that the longitudinal tensile strength and maximum tensile strain of armchair SWCNTs is greater than that of zigzag and chiral SWCNTs and its value increases with increasing SWCNT diameter. The estimated values of the mechanical properties obtained agree well with the published literature data determined using other techniques. As the systems become more complicated with the inclusion of polymers, molecular dynamics (MD) method using well established codes is more adoptable to study the effect of SWCNTs on BECy. Hence, it is used to model and solve the nanosystems to generate their stress-strain behavior. Further, MD approach followed here can effectively include interfacial interaction between polymer and the CNTs as well. Mechanical properties of SWCNT functionalized SWCNT (fSWCNT), pure BECy resin and that of the CNT nanocomposite consisting of specific quantity of SWCNT / fSWCNT in BECy are estimated using MD method. Atomistic models of SWCNT, fSWCNT, BECy, BECy with specific quantities of CNT / fSWCNT are constructed. A monomer of BECy is modelled and stabilized before its usage as a building block for modelling of BECy resin and to compute its properties. A cell of specific size containing monomers of BECy and another cell of same size with SWCNT at centre surrounded by BECy monomer molecules are built. The appropriate quantity of SWCNT in resin is modelled. This model captures the required density of the composite resin. The models so constructed are subjected to geometric optimization satisfying the convergence criteria and equilibrated through molecular dynamics to obtain a stable structure. The minimized structure is subjected to small strain in different directions to calculate the Young’s modulus and other moduli of the CNT-BECy resin composite. The process is repeated for different quantities of SWCNT in BECy resin to obtain their moduli. Further, tensile and shear strengths of CNT-BECy are obtained by subjecting the equilibrated structure to a series of applied strains from 0 to 10% in steps of 1%. The stress values corresponding to each strain are obtained and a stress – strain curve is plotted. From the stress- strain curve, the strengths of the CNT -BECy which is the stress corresponding to the modulus after which the material starts to soften are determined. Effects of functionalization on mechanical properties of SWCNT are observed. Further, effects of functionalization of SWCNT are studied with a specific quantity of fSWCNT on different moduli and strengths of BECy are investigated. The properties of enhanced CNT–BECy nanocomposite resin with different quantities of added CNT obtained through MD are used to estimate the mechanical properties of the CNT-BECy-CFRP nanocomposite using micromechanics model. Further, validation with experimental results is attempted comparing the trends in enhancement of properties of the CNT-BECy resin and CNT-BECy-CFRP nanocomposite system. The outcome of this research work has been significantly positive in terms of i) Development of an appropriate process establishing different parameters for dispersing CNTs in the resin system, mixing, curing cycle for making of nanocomposites demonstrating significant and consistent enhancement of mechanical properties of BECy based resin system and CFRP nanocomposites using optimum quantity of CNTs /fCNTs through a series of well planned and executed experimental investigations. Evaluation of mechanical properties for each of the cases has been carried out experimentally. ii) Establishing a computational methodology involving intricate atomistic modelling and molecular dynamics of nanosystems for estimation of mechanical properties of BECy polymer resin and to study the effects by addition of SWCNT / functionalized SWCNT on the properties. Results obtained through series of experimental investigations have been validated through this computational study. This could be an important step towards realising the potential of this resin system for high performance aerospace applications. Thus, in brief, detailed experimental work combined with computational studies performed as presented in this thesis resulted in achieving structurally efficient cyanate ester based nanocomposites which is unique and not reported in open literature.

Page generated in 0.0607 seconds