Spelling suggestions: "subject:"cyclic nucleotide"" "subject:"byclic nucleotide""
21 |
Function and regulation of the delta subunit of PDE6 /Cook, Terry Ann, January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 113-137).
|
22 |
Characterization of AtCNGC11/12-induced Cell Death and the Role of AtCNGC11 and AtCNGC12 in Ca2+ Dependent Signalling PathwaysUrquhart, William 31 August 2011 (has links)
The Arabidopsis cyclic nucleotide-gated ion channels (AtCNGCs) form a large family consisting of 20 members. It has been suggested that CNGCs contribute to a wide array of biological functions such as pollen tube growth and pathogen defence signalling. However, the precise mechanisms by which AtCNGCs act, and the extent of their biological roles, have yet to be fully elucidated.
AtCNGC11/12, the chimeric CNGC that resulted from the fusion of AtCNGC11 and 12, induces a number of pathogen defence related phenotypes in the Arabidopsis mutant cpr22. Spontaneous lesion formation is one such phenotype. Interestingly, when AtCNGC11/12 is transiently expressed in N. benthamiana it causes cell death which was characterized in this study. Also, AtCNGC11/12 was used to investigate the structural features responsible for the proper function and regulation of AtCNGCs. Electron microscopic analysis of the AtCNGC11/12-induced cell death showed similar characteristics to programmed cell death (PCD), such as plasma membrane shrinkage and vesicle formation. Interestingly caspase-1 inhibitors and the silencing of vacuolar processing enzyme, a plant enzyme with caspase-1 activity, suppressed the induction of cell death. Additionally, pharmacological analyses indicated that the AtCNGC11/12-indiced cell death was also dependent on Ca2+. Furthermore, 3 amino acid residues, R190, A225, and G287, were demonstrated to be essential for AtCNGC11/12-induce cell death. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that AtCNGC11/12, is at the point of, or up-stream of, the Ca2+ signal necessary for the development of HR. Furthermore, the functionality of AtCNGC11/12 as a model for AtCNGC structure-function analyses was demonstrated by the identification of several amino acids necessary for cell death development.
Yoshioka et al. (2006) demonstrated that the loss of AtCNGC11 or 12 results in decreased resistance to avirulent isolates of the oomycete pathogen, H. arabidopsidis. Thus, the present biological role suggested for AtCNGC11 and 12 is in pathogen defence, specifically within effector triggered immunity (ETI). Like AtCNGC11 and 12, AtCNGC2 has been demonstrated to contribute to pathogen defence signalling but has also been implicated in other physiological responses such as ion stress and senescence. To better understand the roles of AtCNGC11 and 12 in both pathogen defence and other Ca2+ dependent signalling processes, I have investigated promoter:GUS reporter lines, as well as, AtCNGC11 and 12 KO and RNAi silenced lines subjected to various treatments. From this work, I have demonstrated that AtCNGC11 and 12 have similar expression patterns during pathogen defence, development, and dark-induced senescence. Additionally, the findings presented here further characterize AtCNGC11 and 12 as contributors to ETI rather than PAMP triggered immunity. Furthermore, I demonstrated that AtCNGC11 and 12 are likely involved in the endogenous movement of Ca2+, contributing to a range of Ca2+ associated signalling pathways including gravitropism and senescence. Taken together, these results have greatly improved the characterization of AtCNGC11 and 12; significantly contributing to the understanding of a large and increasingly important channel family.
|
23 |
Konstruktion und Charakterisierung einer lichtaktivierten PhosphodiesteraseGasser, Carlos Fernando 03 December 2015 (has links)
Genetisch kodierte Photorezeptoren in Modellorganismen begründen die Optogenetik. Sie ermöglicht die nicht-invasive, reversible und räumlich-zeitlich präzise Perturbation von zellulären und physiologischen Signalprozessen durch Licht. Natürliche photoaktivierte Adenylylzyklasen (PACs) steigern die intrazelluläre Konzentration des Botenstoffs zyklischen Adenosinmonophosphats (cAMP) durch Blaulicht. Damit erlauben sie die optogenetische Analyse von cAMP-abhängigen Signalwegen. Diese Arbeit komplementiert PACs durch die synthetische rotlichtaktivierte Phosphodiesterase LAPD zur Degradation von cAMP und zyklischem Guanosinmonophosphat (cGMP). LAPD ist eine Chimäre aus dem photosensorischen Modul von Deinococcus radiodurans Bakteriophytochrom (DrBPhy) und der Effektordomäne der cAMP/cGMP-spezifischen H. sapiens Phosphodiesterase 2A (HsPDE2A). Die Fusionsstelle wurde von den helikalen Linkern zwischen Sensor- und Effektormodulen durch strukturelle Überlagerung abgeleitet. LAPD inkorporierte den Chromophor Biliverdin (BV) nach Expression in E. coli und Reinigung vollständig und entsprach spektral und photochemisch dem Wildtyp-DrBPhy. Durch Bestrahlung mit Rot- und Fernrotlicht (R bzw. FR) wurde LAPD in die metastabilen photochemischen Zustände Pfr (fernrot) bzw. Pr (rot) umgewandelt. Vollständig aktivierte LAPD katalysierte die Hydrolyse von cGMP und cAMP in derselben Größenordnung wie Wildtyp-HsPDE2A. LAPD degradierte cGMP und cAMP bei 6- bzw. 4-facher Steigerung von vmax unter R im Vergleich zu dunkeladaptiertem Enzym. Die Aktivität von R-adaptierter LAPD wurde durch FR reduziert. Die enzymatische Aktivität und Lichtregulation von LAPD-Linkervarianten waren abhängig von der Linkerlänge. LAPD degradierte lichtabhängig cGMP in einer PDE-Reporterzelle. Dabei genügte die endogene BV-Konzentration der Säugerzelle zur Sättigung des Lichteffekts. / Genetically encoded photoreceptors in model organisms establish optogenetics. It enables non-invasive, reversible, and spatio-temporally precise perturbation of cellular and physiological signalling by light. Natural photoactivated adenylate cyclases (PACs) increase the intracellular concentration of the second messenger cyclic adenosine monophosphate (cAMP) under blue light. Hence, PACs allow the optogenetic analysis of cAMP-dependent signalling. This work complements PACs with the synthetic red-light-activated phosphodiesterase LAPD for degradation of cAMP and cyclic guanosine monophosphate (cGMP). LAPD is a chimera made up of the photosensory module of Deinococcus radiodurans bacteriophytochrome (DrBPhy) and the effector domain of cAMP/cGMP-specific H. sapiens Phosphodiesterase 2A (HsPDE2A). The fusion site was derived from the helical linkers between sensor and effector modules via structural superposition. LAPD incorporated the chromophor biliverdin (BV) after expression in E. coli and purification quantitatively, and spectrally and photochemically resembled the wildtype DrBPhy. Upon irradiation with red and far-red light (R and FR, resp.), LAPD was converted to the metastable photochemical states Pfr (far-red) and Pr (red), respectively. Fully activated LAPD catalized the hydrolysis of cGMP and cAMP with rates similar to wildtype HsPDE2A. LAPD degraded cGMP and cAMP with 6- and 4-fold increase of vmax under R, respectively, as compared to the dark state. The activity of R-adapted LAPD was reduced upon irradiation with FR. Enzymatic activity and light regulation of LAPD linker variants depended on the linker length. LAPD light-dependently degraded cGMP in a PDE reporter cell line. Endogenous BV concentrations were sufficient to saturate the light effect in the mammalian cell, which enables a true optogenetic approach.
|
24 |
Structure and function of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesteraseMyllykoski, M. (Matti) 27 May 2013 (has links)
Abstract
The myelin sheath is a crucial component of vertebrate nervous systems. Myelin is formed as the plasma membrane of a glial cell is wrapped around a neuronal axon. The presence of myelin enables the fast transmission of neuronal impulses, and degradation or dysfunction of myelin results in severe neurological symptoms. Molecular composition of myelin is unique, and many myelin proteins are not present elsewhere in the body. A myelin enzyme, 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), is found in specific regions within the myelin sheath and is one of the most abundant proteins in the brain. Substrates for CNPase catalytic activity are formed during brain damage. CNPase also interacts with the cytoskeleton and cell membranes, and it is thought to play a role during myelin formation. Mice that lack CNPase suffer from axonal degeneration and die early.
The aim of this study was to characterise CNPase structure and function. To this end, a system was first developed to produce the protein for subsequent analyses. The aim was to characterise the catalytic mechanism of CNPase by determining its three-dimensional molecular structure at different stages of the catalytic reaction. The interactions between CNPase and other molecules related to its function would also be characterised. Finally, the structure of the full-length protein would be used to understand of the function of the uncharacterised N-terminal domain.
Using X-ray crystallography, the structure of the CNPase catalytic domain was determined in the presence of substrate and product molecules. These data, complemented with analyses of mutationally inactivated enzyme variants, were used to examine the catalytic reaction at the molecular level. The catalytic domain structure was compared to homologous enzymes from diverse organisms. The interaction between CNPase and the calcium-sensing protein calmodulin was characterised. The solution structure of full-length CNPase was determined using small-angle X-ray scattering, and protein sequence databases were utilised to determine CNPase conservation during animal evolution.
The results provide novel information on the catalytic activity and overall function of CNPase. Further studies will be necessary to determine its specific role, but it is increasingly clear that CNPase can perform multiple important tasks within the nervous system. / Tiivistelmä
Myeliinituppi on tärkeä osa selkärankaisten hermostoa. Myeliiniä muodostuu, kun gliasolun solukalvo kiertyy hermosolun aksonin ympärille. Myeliini mahdollistaa hermoimpulssien nopean välityksen, ja sen tuhoutuminen ja vajaatoiminta aiheuttavat vakavia neurologisia oireita. Myeliinin molekyylikoostumus on ainutlaatuinen, ja monet myeliiniproteiineista eivät esiinny muualla elimistössä. Myeliinissä esiintyvää entsyymiä, 2′,3′-syklisten nukleotidien 3′-fosfodiesteraasia (CNPaasi), esiintyy runsaasti tietyillä myeliinialueilla, ja se on yksi aivojen runsaslukuisimmista proteiineista. Substraatteja CNPaasin katalyyttiselle aktiivisuudelle muodostuu aivovaurion aikana. CNPaasi on myös vuorovaikutuksessa solun tukirangan ja solukalvon kanssa, ja sen uskotaan vaikuttavan myeliinin muodostumiseen. Hiiret, joilta puuttuu CNPaasi, kärsivät aksonien rappeumista ja kuolevat ennenaikaisesti.
Tämän tutkimuksen tavoite oli karakterisoida CNPaasin rakennetta ja toimintaa. Tätä tarkoitusta varten ensin kehitettiin menetelmä analysoitavan proteiinin tuottamiseksi. Tavoitteena oli karakterisoida CNPaasin katalyyttinen mekanismi määrittämällä sen kolmiulotteinen molekyylirakenne katalyysireaktion eri vaiheissa. Myös CNPaasin vuorovaikutuksia sen toimintaan liittyvien molekyylien kanssa tutkittiin. Lopuksi kokopitkän proteiinin rakenteen avulla selvitettiin karakterisoimattoman aminoterminaalisen alayksikön toimintaa.
CNPaasin katalyyttisen alayksikön rakenne määritettiin käyttäen röntgenkristallografiaa substraatti- ja tuotemolekyylien läsnäollessa. Rakennetta, täydennettynä mutaatioilla inaktivoitujen entsyymimuunnosten analyysillä, käytettiin katalyyttisen reaktion molekyylitason karakterisointiin. Katalyyttisen alayksikön rakennetta verrattiin eri organismeissa esiintyviin homologisiin entsyymeihin. CNPaasin ja kalsiumia sitovan kalmoduliinin vuorovaikutusta karakterisoitiin. Kokopitkän CNPaasin liuosrakenne selvitettiin pienkulmaröntgensironnan avulla, ja CNPaasin sekvenssin säilymistä eläinten evoluution aikana tarkasteltiin proteiinisekvenssitietokantoja käyttämällä.
Tulokset antavat uutta tietoa CNPaasin katalyyttisestä aktiivisuudesta ja tämän arvoituksellisen entsyymin toiminnasta. Jatkotutkimukset ovat tarpeen sen täsmällisen roolin selvittämiseksi, mutta on kasvavassa määrin selvää, että CNPaasi pystyy suorittamaan useita tärkeitä tehtäviä hermostossa.
|
25 |
Estudo morfológico e funcional do hemipênis de Crotalus durissus terrificus (Serpentes: Viperidae: Crotalinae) / Estudo morfológico e funcional do hemipênis de Crotalus durissus terrificus (Serpentes: Viperidae: Crotalinae)Arruda, Andre Moreira Martins, 1987- 26 August 2018 (has links)
Orientador: Gilberto de Nucci / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-26T11:10:20Z (GMT). No. of bitstreams: 1
Arruda_AndreMoreiraMartins_M.pdf: 11172054 bytes, checksum: db7fb87cc200cb091d3be4733e8d8af5 (MD5)
Previous issue date: 2013 / Resumo: A presença de um par de órgãos copuladores, os hemipênis, é a característica mais singular do grupo Squamata, que reúne as serpentes e os lagartos. Para que ocorra a ereção, o hemipênis sofre ingurgitamento dos corpos cavernosos por sangue e linfa, além de contar com o auxílio da contração do músculo propulsor do pênis e o relaxamento do músculo retrator. O coito nestes animais pode durar até 28 horas, porém, os mecanismos envolvidos, as estruturas e sua base farmacológica de funcionamento são ainda pouco conhecidas. O hemipênis consiste de dois corpos cavernosos funcionalmente concêntricos, um deles contendo feixes de fibras musculares lisas. Em mamíferos, sintases de NO neuronais e endoteliais estão presentes em estruturas neurais e no endotélio, respectivamente, enquanto a guanilato ciclase solúvel e PDE5 (fosfodiesterase tipo 5) estão expressas no músculo liso trabecular. Partindo disto, para investigar as vias presentes no tecido das cobras, foram construídas curvas concentração-resposta cumulativas de relaxamento para a acetilcolina (ACh), nitroprussiato de sódio (SNP), BAY41-2272 e tadalafil em corpos cavernosos de Crotalus (CCC) pré-contraídos com fenilefrina. Relaxamentos induzidos por estímulo elétrico (EFS) também foram feitos na ausência e presença de L-NAME (100 mm), ODQ (10 mM) e tetrodotoxina (TTX, 1 mM). Em CCC pré-contraídos, o relaxamento dependente de frequência, gerado por EFS, durou três vezes mais do que aqueles em CC mamíferos. Embora estes relaxamentos sejam praticamente abolidos por L-NAME ou ODQ, eles não foram afetados pela TTX. Em contraste, o EFS promoveu relaxamento em corpos cavernosos de sagui que haviam sido incubados com TTX / Abstract: The presence of a pair of copulatory organs, the hemipenes, is the most unique feature of the group Squamata, which includes snakes and lizards. For an erection to occur, the hemipenes suffer engorgement of the corpora cavernosa with blood and lymph, besides counting with the aid of contraction of the propellant muscle and relaxation of penis retractor muscle. Coitus in these animals can last up to 28 hours, however, the mechanisms involved, the structures and their pharmacological basis are still little known. The hemipenis consists of two concentric functionally cavernous bodies, one containing bundles of smooth muscle fibers. In mammals, neuronal NO synthases and endothelial cells are present in the endothelium and neuronal structures, respectively, whereas the soluble guanylate cyclase and PDE5 (phosphodiesterase type 5) are expressed in trabecular smooth muscle. To investigas the tissue were constructed cumulative concentration-response curves for relaxation to acetylcholine (Ach), sodium nitroprusside (SNP), BAY41-2272 and tadalafil in the corpora cavernosa of Crotalus (CCC) pre contracted with phenylephrine. Relaxations induced by electrical stimulation (EFS) was also tested in the presence and absence of L-NAME (100 mm), ODQ (10 mM) and tetrodotoxin (TTX, 1 mM). In precontracted CCC, dependent relaxation frequency generated by EFS last three-times more than those in DC mammals. Although these relaxations are virtually abolished by L-NAME or ODQ, they were not affected by TTX. In contrast, EFS caused a relaxation of the corpus cavernosum in marmosets that had been incubated with TTX / Mestrado / Farmacologia / Mestra em Farmacologia
|
26 |
家蚕の代謝特性とその有効利用山下, 興亜, 古賀, 克己, 江口, 正治, 佐々木, 卓治, 柳沼, 利信, 小林, 迪弘, 森島, 伊佐夫, 大西, 英爾, 小山内, 実 03 1900 (has links)
科学研究費補助金 研究種目:総合研究(A) 課題番号:60304024 研究代表者:山下 興亜 研究期間:1985-1987年度
|
27 |
Biophysical and Phenomenological Models of Cochlear Implant Stimulation / Models of Cochlear Implant StimulationBoulet, Jason January 2016 (has links)
Numerous studies showed that cochlear implant (CI) users generally prefer individualized stimulation rates in order to maximize their speech understanding. The underlying reasons for the reported variation in speech perception performance as a function of CI stimulation rate is unknown. However, multiple interacting electrophysiological processes influence the auditory nerve (AN) in response to high-rate CI stimulation. Experiments studying electrical pulse train stimulation of cat AN fibers (ANFs) have demonstrated that spike rates slowly decrease over time relative to onset stimulation and is often attributed to spike rate (spike-triggered) adaptation in addition to refractoriness. Interestingly, this decay tends to adapt more rapidly to higher stimulation rates. This suggests that subthreshold adaptation (accommodation) plays a critical role in reducing neural excitability.
Using biophysical computational models of cat ANF including ion channel types such as hyperpolarization-activated cyclic nucleotide-gated (HCN) and low threshold potassium (KLT) channels, we measured the strength of adaptation in response to pulse train stimulation for a range of current amplitudes and pulse rates. We also tested these stimuli using a phenomenological computational ANF model capable of applying any combination of refractoriness, facilitation, accommodation, and/or spike rate adaptation.
The simulation results show that HCN and KLT channels contribute to reducing model ANF excitability on the order of 1 to 100 ms. These channels contribute to both spike rate adaptation and accommodation. Using our phenomenological model ANF we have also shown that accommodation alone can produce a slow decay in ANF spike rates responding to ongoing stimulation.
The CI users that do not benefit from relatively high stimulation rates may be due to ANF accommodation effects. It may be possible to use electrically evoked compound action potentials (ECAP) recordings to identify CI users exhibiting strong effects of accommodation, i.e., the increasing strength of adaptation as a function of increasing stimulation rate. / Dissertation / Doctor of Philosophy (PhD) / Cochlear implants (CI) attempt to restore hearing to individuals with severe to profound hearing deficits by stimulating the auditory nerve with a series of electrical pulses. Recent CI stimulation strategies have attempted to improve speech perception by stimulating at high pulse rates. However, studies have shown that speech perception performance does not necessarily improve with pulse rate increases, leading to speculation of possible causes. Certain ion channels located in auditory nerve fibers may contribute to driving the nerve to reduce its excitability in response to CI stimulation. In some cases, those channels could force nerve fibers to cease responding to stimulation, causing a breakdown in communication from the CI to the auditory nervous system. Our simulation studies of the auditory nerve containing certain types of channels showed that the effective rate of communication to the brain is reduced when stimulated at high rates due to the presence of these channels.
|
28 |
Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion ChannelsChin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development.
The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function.
First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta.
The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
|
29 |
Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion ChannelsChin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development.
The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function.
First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta.
The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
|
Page generated in 0.0646 seconds