• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 12
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Études des mécanismes d’induction de l’immunosuppression par le virus Herpès Humain 6

Debbeche, Olfa 04 1900 (has links)
HHV-6 is a ubiquitous human herpesvirus. Most individuals become infected at the age of 2 years. Primary infection by the virus causes a self-limiting febrile illness called exanthem subitum or roseola. In adults, primary infection may cause mononucleosis-like illnesses. The infection usually remains latent in healthy individuals, but often reactivates in immunocompromised individuals, for example, transplant patients and AIDS patients. The virus has also been associated with cancers and lymphoproliferative disorders. The virus encodes two proteins that interact with p53. However, little is known concerning the impact of the virus on cell cycle progression in human cells. The investigations reported in the thesis were focused on this issue. We show here that that HHV-6 infection delays the cell cycle progression in human T cell line HSB-2, as well as in primary human T cells and causes their accumulation in S and G2/M phase. By degrading the viral DNA in the virus-infected cells, we show that the infected cells accumulate in the G2/M and not in the S phase. We observed an increase in the kinase activity of cdc2 in virus-infected cells despite lower levels of its catalytic partners, cyclin A and cyclin B. We show here that the viral early antigen p41 associates with, and increases the kinase activity of, CDK1. Our studies have shown that there is a drastic reduction of p21 protein, despite the virus-induced stabilization and activation of p53 suggesting that p53 may be transcriptionally inactivated in the virus-infected cells. This decrease of p21 in infected cells was partially restored by proteasome inhibitors. These results suggest that HHV-6 causes perturbations in the normal progression of cell cycle in human T cells. Autophagy is a physiological cell process during which old cellular constituents and long-lived proteins in cells are degraded. This process is regulated in a cell cycle-dependent manner. We show here that infection with HHV-6 induces autophagy in HSB-2 cells. This was shown by the induction of LC-3 II as well as by the appearance of autophagic vacuoles in the virus-infected cells. However, we found that the virus inhibits fusion between autophagic vacuoles and lysosomes formed in infected cells, thus evading the autophagic response of infected host cells. Finally we tried to investigate replication of the virus in human cells in the absence of P53; a tumor suppressor gene which is also known as "the guardian of the genome ". During these investigations, we found that that inhibition of p53 gene expression mediated by siRNA as well as its inhibition by pharmacological inhibitors leads to massive cell death in human T cell line HSB-2 that carries a wild-type p53. We show that this death also occurs in another cell line CEM, which carries a transcriptionally mutated p53. Interestingly, the cell death could be prevented by pharmacological inhibitors of autophagy and necroptosis. Taken together, our results provide important novel insights concerning the impact of HHV-6 on cell cycle regulation and autophagy as well as of basal level p53 in cell survival. / HHV-6 est un virus herpès humain ubiquitaire. La plupart des individus deviennent séropositifs à l’âge de 2 ans. L’infection primaire par HHV-6 donne lieu à une maladie fébrile chez les enfants, appelée exanthème subitum ou la roséole. Par contre, chez l'adulte, cette infection cause des maladies de type mononucléose. L'infection reste généralement latente chez les individus sains, mais elle se réactive souvent chez les personnes immunodéprimées, par exemple, chez les personnes greffées et les patients atteints du sida. HHV-6 a été associé à plusieurs types de cancers et de désordres lymphoprolifératifs. Ce virus induit l’immunosuppression et inhibe la prolifération des lymphocytes par les mitogènes. C’est pour toutes ces raisons que nous voulions savoir si ce virus dérègle le cycle cellulaire des cellules qu’il infecte. Les travaux réalisés durant cette thèse ont porté sur les changements induits dans les cellules humaines par ce virus au cours de la progression du cycle cellulaire. Nous avons montré que l'infection par HHV-6 retarde la progression du cycle cellulaire dans la lignée cellulaire T humaine HSB-2, ainsi que dans les lymphocytes T primaires humains pour les accumuler dans les phases S et G2/M. Cependant, après avoir traité les cellules avec la nucléase du Micrococcus, nous avons constaté que le cycle cellulaire des cellules infectées s’accumulait plutôt dans la phase G2/M. La nucléase dégrade préférentiellement l’ADN virale. Nous avons observé une augmentation de l'activité kinase de cdc2 dans les cellules infectées malgré une baisse des niveaux de ses partenaires catalytiques, la cycline A et la cycline B. Nos études ont montré qu’il y a une diminution drastique de la protéine p21 dans les cellules infectées, en dépit de la stabilisation et de l'activation de p53 induite dans ces cellules. Ce qui laisse penser que la protéine p53 pourrait être inactive sur le plan transcriptionnel dans les cellules infectées. Cette diminution de p21 dans les cellules infectées est partiellement restaurée après incubation des cellules dans un milieu de culture contenant des inhibiteurs du protéasome. En plus, nous démontrons ici qu’une protéine virale précoce, p41, s’associe et se fixe avec cdc2 et augmente son activité kinase. Tous ces résultats suggèrent que HHV-6 provoque des perturbations énormes dans la progression normale du cycle cellulaire dans les cellules T humaines. Dans ces études, nous avons démontré aussi que l’infection par HHV-6 induit l'autophagie dans les cellules HSB-2, comme il a été démontré par l’induction de LC-3 II et par la formation de vacuoles autophagiques dans les cellules qui sont infectées. Nos résultats indiquent que HHV-6 inhibe la fusion entre les vacuoles autophagiques formées et les lysosomes dans les cellules infectées modulant ainsi la réponse autophagique des cellules hôtes infectées. Nous avons trouvé aussi que l’inhibition de ce processus par un inhibiteur pharmacologique diminue la réplication virale. L'autophagie est un processus physiologique cellulaire pendant lequel les vieux constituants cellulaires (mitochondries, protéines cellulaires, etc) se dégradent. Le fait que ce processus soit modulé dans les cellules dépendantes des différentes phases du cycle cellulaire, nous a poussé à l’étudier. Enfin, nous essayons d’investiguer la réplication virale dans les cellules dépourvues de p53, le gène suppresseur de tumeur, qui contrôle la progression de cycle cellulaire. Nous avons émis l’hypothèse suivante, que ces virus peuvent mieux se répliquer dans les cellules n’exprimant pas le gène p53. En vérifiant cette hypothèse, nous avons trouvé que l'inhibition de l’expression de p53 provoquée par siRNA ou par un agent pharmacologique conduit à une mort cellulaire massive dans une lignée de cellules T humaines ayant un gène p53 de type sauvage. Nous démontrons que cette mort se produit aussi dans une autre lignée cellulaire dont le p53 est muté et qu’elle pourrait être évitée par des inhibiteurs d'autophagie ou de nécroptose. Nos observations mettent en évidence qu’un niveau d’expression basale de p53 est nécessaire à la survie cellulaire.
12

New roles of the transcription factor NKX6.1 in beta cell biology

Schisler, Jonathan Cummings. January 2006 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Embargoed. Vita. Bibliography: 196-214.
13

Investigations of the Functions of gamma-Tubulin in Cell Cycle Regulation in <i>Aspergillus nidulans</i>

Nayak, Tania 11 September 2008 (has links)
No description available.
14

Cell cycle control and its modulation in HPV infected cells

Lyman, Rachel C. January 2010 (has links)
A key effect of human papillomavirus (HPV) infection is to disrupt the normal cell cycle in order to subvert the cellular DNA replication machinery. Morphologically, condylomata induced by high and low risk HPV types cannot be distinguished and many studies have shown that the pattern of viral gene expression is similar in condylomata caused by both high risk and low risk HPV types. Detailed morphological study of cell cycle protein expression has not previously been performed on condylomata infected with low risk HPV types. The findings presented suggest that the mechanisms employed by low risk HPV6 or HPV11 to subvert cellular functions in condylomata acuminata are similar to those employed by high risk HPVs, with the exception of cyclin D1 and p53 protein over-expression. The differences in p53 expression and cyclin D1 expression seen between high and low risk HPV infection, reflect the known differences between high and low risk types and are in agreement with the known differences between high risk and low risk E6 and E7 proteins. PHK transduction studies demonstrated HPV E6 and E7 induce changes in cell cycle protein expression and that there are differences in cell cycle abrogation between HPV6 and HPV16. Disruption of the p53-MDM2 interaction can lead to activation of the p53 pathway. HPV infected lesions almost always contain wild-type p53. The binding of HPV E6 to p53, and its subsequent targeting for degradation, prevents activation of the p53 pathway in HPV infected cells. Cells over expressing HPV genes were treated with Nutlin-3, a MDM2-small molecule antagonist. The findings presented suggest treatment with Nutlin-3 induces cell cycle arrest in cells expressing HPV16 E7 and HPV6 E6 and HPV6 E7. This suggests a potential role for Nutlin-3 in the treatment of HPV infected cells.
15

RSK2 et Greatwall, deux AGC kinases actrices de la mitose / RSK2 and Greatwall, two AGC kinases involved in the regulation of mitosis

Brioudes, Estelle 25 November 2010 (has links)
La mitose est une phase importante du cycle cellulaire. Les mécanismes de surveillance s'assurent de l'ordre et de l'exécution correcte des événements du cycle cellulaire dont les erreurs peuvent conduire à l'aneuploïdie. Pendant la mitose, la séparation des chromatides sœurs est régulée par le point de contrôle du fuseau mitotique qui s'assure que tous les chromosomes sont correctement alignés sur la plaque métaphasique. L'entrée et la sortie de mitose sont régulées par l'activation et l'inactivation du complexe cycline B/Cdk1. Cette fine régulation fait intervenir de nombreuses kinases et phosphatases. Dans ce projet nous nous sommes intéressés plus particulièrement à deux AGC kinases : RSK2 et Greatwall (Gwl).Au cours de cette étude nous nous sommes proposés d'analyser l'implication de RSK2, substrat majeur de la MAPK, dans le point de contrôle du fuseau mitotique. Nos résultats montrent que RSK2 est essentielle pour l'activité du point de contrôle du fuseau mitotique dans les extraits d'œufs de xénope ainsi que pour la localisation des autres protéines de ce mécanisme de surveillance localisées aux kinétochores. Nous montrons également que RSK2 participe au point de contrôle dans les cellules humaines. En effet, RSK2 est nécessaire à la localisation aux kinétochores de Mad1, Mad2 et Cenp-E, protéines essentielles à l'activité de ce checkpoint. L'entrée et la sortie de mitose sont régulées par le complexe cycline B/Cdk1 et des phosphatases. Gwl est une nouvelle kinase essentielle à l'entrée en mitose et au maintien de l'état mitotique dans les extraits d'œufs de xénope. En effet, nos résultats montrent que Gwl maintient l'état mitotique indépendamment du complexe cycline B/Cdk1, en régulant négativement PP2A, une phosphatase responsable de la déphoshorylation des substrats mitotiques. / Mitosis is an important phase of cell cycle. The Spindle Assembly Checkpoint (SAC) verifies the orders and the events correct execution of the cell cycle, as errors may lead to aneuploidy. During the mitosis, the checkpoint delays the anaphase onset until all chromosomes are correctly attached to the spindle‘s microtubules. Entry and Exit of mitosis are regulated by the activation and inactivation of cyclin B/Cdk1. A lot of kinases and phosphatases are involved in this fine regulation. In this project, we are particularly focusing on two AGC kinases: RSK2 and Greatwall (Gwl).In this study, we analyzed RSK2, a major substrates of MAPK, involvement in SAC. Our results show that RSK2 is essential to the activation of SAC in xenopus egg extracts and for the localization at the kinétochores of the others SAC components. We also show that RSK2 participate in the maintenance of the SAC in human cells. Indeed, RSK2 is necessary for Mad1, Mad2 and Cenp-E localization, essential proteins for SAC activation.Entry and exit of mitosis are regulated by cyclin B/Cdk1 complex and phosphatases. Gwl is a new kinase essential to the entry into mitosis and maintenance of the mitotic state in xenopus egg extracts. Indeed, our results showed that Gwl maintains the mitotic state independently of cyclin B/Cdk1 but with the negative regulation of PP2A, which dephosphorylate the mitotic substrates
16

Unterschiedliche Aktivierung von Signalwegen zur Zellproliferation in mesenchymalen Tumoren des Gastrointestinaltrakts / Differently activated pathways to cell proliferation in mesenchymal tumors of the gastrointestinal tract

Köhler, Kristin 14 June 2010 (has links)
No description available.
17

Influence de Toxoplasma Gondii dans la régulation d'UHRF1 via la voie NF-KB / Influence of Toxoplasma gondii in the regulation of UHRF1 by NF-KB signaling pathway

Kanjo, Ghaidaa 30 September 2014 (has links)
T. gondii interfère avec l'activation des voies de signalisation de NF-kB des cellules hôtes. Ainsi, lors de l’infection par T. gondii, 85% des gènes dépendant de NF-kB sont up-régulés. Un autre facteur de transcription dont l’expression est modulée par le parasite est UHRF1 (Ubiquitin-like,containing PHD and RING finger domains, 1). UHRF1, en se fixant sur le promoteur du gène de la cycline b, induit une répression épigénétique de ce dernier conduisant à un arrêt du cycle cellulaire des cellules infectées en phase G2 et à un arrêt de la prolifération parasitaire. L’analyse in silico du promoteur du gène uhrf1 a montré qu’il possédait 9 sites de fixation de NF-kB. Effectivement nous avons démontré que NF-kB interagit avec le promoteur du gène uhrf1 lors d’une infection par T. gondii. L’expression d’UHRF1 serait donc modulée par NF-kB dans les cellules infectées par T. gondii. Or NF-kB a une régulation différentielle en fonction de la nature de la souche infectante. Là encore, nous avons pu observer une régulation différentielle d’UHRF1 selon la nature de la souche infectante, pouvant être dues à la régulation souche dépendante de NF-kB. La détermination du rôle précis de l’activation d’UHRF1 dans les cellules infectées et l’identification du ou des facteurs parasitaires responsables pourraient permettre de mieux comprendre les mécanismes de persistance intracellulaire du parasite et de découvrir de nouveaux points d’impact thérapeutiques. / T.gondii interferes with the activation of NF-kB signaling pathways. Thus, upon infection by T.gondii, 85% of genes NF-kB-dependent are up-regulated. Another transcription factor whose expression is modulated by the parasite is UHRF1 (Ubiquitin-like, Containing PHD and RINGfinger domains, 1). UHRF1, bind to the gene promoter of cyclin b and induces epigenetic repression of this gene leading to cell cycle arrest in G2 phase of infected cells and stop the proliferation in both infected cells and parasite. In silico analysis of the uhrf1 gene promoter has been shown to possess 9 binding sites of NF-kB. Our study showed that NF-kB actually interacts with the promoter of gene uhrf1 during infection with T. gondii. This suggests that the expression of UHRF1 is modulated by NF-kB in T. gondii-infected cells. In addition we observed differential regulation of UHRF1 depending on the nature of the infecting strain. These variations may also be due to already well-known differential regulation of NF-kB by different strains of T.gondii. Determining the precise role of UHRF1 activation in infected cells and the identification of the parasitic factor responsible of this activation would allow to a better understanding of the mechanisms of intracellular persistence of the parasite and allow to unravel new therapeutic trails.
18

Regulation of CDK1 Activity during the G1/S Transition in S. cerevisiae through Specific Cyclin-Substrate Docking: A Dissertation

Bhaduri, Samyabrata 21 October 2014 (has links)
Several cell cycle events require specific forms of the cyclin-CDK complexes. It has been known for some time that cyclins not only contribute by activating the CDK but also by choosing substrates and/or specifying the location of the CDK holoenzyme. There are several examples of B-type cyclins identifying certain peptide motifs in their specific substrates through a conserved region in their structure. Such interactions were not known for the G1 class of cyclins, which are instrumental in helping the cell decide whether or not to commit to a new cell cycle, a function that is non-redundant with B-type cylins in budding yeast. In this dissertation, I have presented evidence that some G1 cyclins in budding yeast, Cln1/2, specifically identify substrates by interacting with a leucine-proline rich sequence different from the ones used by B-type cyclins. These “LP” type docking motifs determine cyclin specificity, promote phosphorylation of suboptimal CDK sites and multi-site phosphorylation of substrates both in vivo and in vitro. Subsequently, we have discovered the substrate-binding region in Cln2 and further showed that this region is highly conserved amongst a variety of fungal G1 cyclins from budding yeasts to molds and mushrooms, thus suggesting a conserved function across fungal evolution. Interestingly, this region is close to but not same as the one implicated in B-type cyclins to binding substrates. We discovered that the main effect of obliterating this interaction is to delay cell cycle entry in budding yeast, such that cells begin DNA replication and budding only at a larger than normal cell size, possibly resulting from incomplete multi-site phosphorylation of several key substrates. The docking-deficient Cln2 was also defective in promoting polarized bud morphogenesis. Quite interestingly, we found that a CDK inhibitor, Far1, could regulate the Cln2-CDK1 activity partly by inhibiting the Cln2-substrate interaction, thus demonstrating that docking interactions can be targets of regulation. Finally, by studying many fungal cyclins exogenously expressed in budding yeast, we discovered that some have the ability to make the CDK hyper-potent, which suggests that these cyclins confer special properties to the CDK. My work provides mechanistic clues for cyclinspecific events during the cell cycle, demonstrates the usefulness of synthetic strategies in problem solving and also possibly resolves long-standing uncertainties regarding functions of some cell cycle proteins.
19

Deciphering the role of Ankle2 during mitotic exit

Jordana, Laia 04 1900 (has links)
La progression mitotique est principalement régulée par la phosphorylation et la déphosphorylation des protéines. La kinase dépendante des cyclines liée à la cycline B (Cdk1 - cycline B) et d'autres kinases phosphorylent une myriade de protéines pour promouvoir l’entrée à la mitose. Ces phosphorylations sont réversées par les phosphatases lors de la sortie mitotique. La protéine phosphatase 2A avec sa sous-unité régulatrice B55 (PP2A-B55) est une des principales phosphatases neutralisant les phosphorylations par Cdk1. Dans ce projet, nous avons vu que Ankle2 participe à la sortie de la mitose. En utilisant D. melanogaster comme modèle puissant, nous avons observé que Ankle2 est important pour le recrutement des protéines BAF et Lamin associées à l'enveloppe nucléaire (NE) à la télophase, assurant la formation d'un seul noyau. In vivo, nos résultats indiquent que Ankle2 est crucial pour le développement de l'embryon de drosophile, car les embryons ARNi Ankle2 sont arrêtés lors de la première mitose. Pour amorcer l’étude des mécanismes moléculaires par lesquels Ankle2 remplit ces foncions, nous avons identifié ses partenaires d’interactions. Nous avons constaté que Ankle2 est associé à une forme active de PP2A, suggérant Ankle2 comme une sous-unité régulatrice potentielle de PP2A. De plus, Ankle2 forme un complexe avec la cycline B et les Cdks mitotiques, et nos résultats génétiques suggèrent que les deux protéines peuvent avoir des rôles opposés. Nous avons également découvert que Ankle2 interagit avec la protéine du réticulum endoplasmique (ER) Vap33 à travers son motif FFAT. Dans ce projet, nous avons constaté que Ankle2 est une protéine associée au ER chez la drosophile qui est cruciale pour la complétion de la mitose, et que pourrait réguler l'activité des kinases et phosphatases mitotiques. Cette étude servira de base pour déchiffrer les mécanismes moléculaires précis par lesquels Ankle2 favorise la sortie de la mitose. / Protein phosphorylation and dephosphorylation is one of the mechanisms that regulates mitotic progression. Cyclin dependent kinase 1 bound to cyclin B (Cdk1 – cyclin B) and other kinases phosphorylate a myriad of proteins to promote early mitotic events. These phosphorylations are reversed by phosphatases during mitotic exit. The Protein Phosphatase 2A with its regulatory subunit B55 (PP2A-B55) is the major phosphatase counteracting Cdk1 phosphorylations. In this project, we have found that Ankle2 participates in mitotic exit. Using D. melanogaster as a model, we have found that Ankle2 is important for the Nuclear Envelope (NE)-associated proteins BAF and Lamin recruitment at telophase, ensuring the formation of a single nucleus. In vivo, we have found that Ankle2 is crucial for Drosophila embryo development, as RNAi Ankle2 embryos are arrested in the first mitosis. To study the molecular mechanisms by which Ankle2 promotes mitotic exit, we identified its interacting partners. We found that Ankle2 is associated with an active form of PP2A, suggesting Ankle2 as a potential regulatory subunit of PP2A. Moreover, Ankle2 engages in a complex with cyclin B and mitotic Cdks, and our genetic results suggest that Ankle2 and mitotic cyclin – Cdk complex may have opposite roles. We have also found that Ankle2 interacts with the Endoplasmic-Reticulum (ER) protein Vap33 through its FFAT motif. In this project, we have found that Ankle2 is an ER-associated protein in Drosophila that is crucial for completion of mitosis, probably regulating the activity of mitotic kinases and phosphatases. This study will serve as a basis to decipher the precise molecular mechanisms by which Ankle2 promotes mitotic exit.
20

Aneuploidy and cell cycle control in the mouse preimplantation embryo

Brennan-Craddock, Henry 04 1900 (has links)
Durant la division cellulaire, la ségrégation des chromosomes et le partage du cytoplasme sont essentiels pour maintenir l'intégrité génomique. Cependant, les erreurs de ségrégation sont fréquentes chez l'embryon préimplantatoire de mammifère et entraînent un gain ou une perte de chromosomes, appelé aneuploïdie. L'aneuploïdie est préjudiciable au développement et est la principale cause de pertes de grossesse. La mitose est coordonnée par cycle cellulaire, notamment la Cycline-B. Comprendre comment la destruction de la Cycline-B contrôle la sortie de la mitose des embryons pourrait expliquer pourquoi l'aneuploïdie est courante en clinique de fertilité. Nous avons étudié la destruction de la Cycline-B en fonction du stade de développement et de l'aneuploïdie. La littérature suggère que l’aneuploïdie perturbe le cycle cellulaire conduisant les cliniques de fertilité à utiliser la durée du cycle cellulaire et la morphologie (morphocinétique) pour prédire la santé de l'embryon. Cependant, la prédiction de la ploïdie par morphocinétique reste à démontrer. Notre objectif était de savoir comment l'aneuploïdie affecte le cycle cellulaire et le développement de l'embryon. Après une micro-injection de CyclineB1:GFP (Cycline-B) et H2B:RFP (chromosomes), les embryons de souris furent imagés par microscopie confocale. Des cellules aneuploïdes furent générées chimiquement pour évaluer leurs morphocinétiques. Curieusement, l'apparition de la Cycline-B après nuclear envelope breakdown a été devancée avec la progression du développement indépendamment de la taille des cellules. De plus, les erreurs de ségrégation ont peu impacté le développement et la destruction de la Cycline-B. Nous concluons que la morphocinétique est un outil prédictif peu fiable pour identifier les embryons aneuploïdes. / During cell division, it is essential that chromosome segregation during mitosis, and the partitioning of the cytoplasm at cytokinesis occur in successive timing to maintain genomic integrity. However, segregation errors are frequently observed in the early mammalian embryo, causing daughter cells to inherit whole chromosome gains and losses, termed aneuploidy. Aneuploidy is detrimental to development, being the leading cause of pregnancy loss and developmental disorders. The timing of mitosis is coordinated by the cell cycle component, Cyclin B. Understanding how Cyclin B destruction temporally controls mitotic exit in embryos could help elucidate why aneuploidy is common in IVF clinics. We investigate how Cyclin B destruction changes in different developmental stages and the presence of aneuploidy. Literature suggests aneuploidy disrupts the cell cycle, leading IVF clinics to use cell cycle timings and morphology (morphokinetics) to predict embryo health. However, whether morphokinetics predicts embryo ploidy is uncertain. We seek to investigate how aneuploidy affects the cell cycle and embryo development. We used live-cell confocal imaging and microinjection of CyclinB1:GFP and H2B:RFP mRNA to visualise Cyclin B and chromosomes during mitosis in the 2-, 4- and 8-cell stage mouse embryo. Secondly, we pharmacologically-induced aneuploidy to assess aneuploid morphokinetics. Interestingly, we observe a developmental trend, independent of cell size, where Cyclin B onset begins progressively sooner after NEBD at the 2-, 4- and 8-cell stage. Additionally, chromosome segregation errors had little impact on Cyclin B destruction and development. Finally, we find morphokinetics to be a poor predictive tool in identifying aneuploid embryos.

Page generated in 0.0965 seconds