• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification et caractérisation des premiers substrats de la protéine kinase Greatwall et étude de leur implication au cours du cycle cellulaire / Identification and characterization of the first substrates of the Greatwall kinase, study of their functions during the cell cycle

Gharbi Ayachi, Aicha 01 July 2013 (has links)
Au cours de la division cellulaire, l'information génétique doit être transmise de façon précise et identique de la cellule mère aux cellules filles. Le génome est répliqué au cours de la phase S tandis que la distribution des deux copies entre les cellules filles se fait au cours de la mitose. L'initiation et le maintien de la mitose nécessite un équilibre contrôlé entre les activités des kinases et des phosphatases. La protéine kinase Greatwall est requise pour l'entrée et le maintien de la mitose à travers l'inhibition de la PP2A, la principale phosphatase qui déphosphoryle les substrats du complexe Cdk1-cycline B. Au cours de ce travail, nous avons entrepris l'étude structure/fonction de la protéine kinase Greatwall qui nous a permis de caractériser ses mécanismes d'activation. Nos résultats montrent que Greatwall appartient à la famille des AGC kinases mais qu'elle présente la particularité d'être contrôlée par des mécanismes qui lui sont propres: l'activation de la protéine, qui se fait en deux étapes, est différente de celle décrite pour les autres membres de cette famille de kinases. Par la suite, nous avons identifié deux substrats de la protéine kinase Greatwall, Arpp19 (cAMP-Regulated Phosphoprotein 19) et l'alpha-Endosulfine (ENSA). Nous avons montré qu'une fois phosphorylées par Greatwall, ces deux protéines s'associent à la PP2A et inhibent cette phosphatase. Malgré le fait que ces deux substrats soient capables d'inhiber la PP2A, seul Arpp19 endogène est responsable de l'inhibition de la phosphatase pour promouvoir l'entrée en mitose dans le modèle des extraits d'ovocytes de xénope. Nous nous intéressons à présent à l'étude du rôle d'ENSA. / During cell division, genetic information must be transmitted from the mother cell to the daughter cell in an accurate and identical way. During the S phase the genome is replicated while an equal distribution of two copies of DNA between the daughter cells is made during mitosis. Initiation and maintenance of mitosis require a controlled balance between kinase and phosphatase activities. Greatwall kinase is essential for mitotic entry and maintenance through the inhibition of PP2A, the main phosphatase that dephosphorylates Cdk1/cycline B mitotic substrates. Here we investigate the mechanisms regulating Greatwall. Our results show that Greatwall is a member of the AGC family of kinases that appears to be regulated by a unique two-step mechanism that differs from the other members of this family. Furthermore we identified Arpp19 (cAMP-Regulated Phosphoprotein 19) and alpha-Endosulfine (ENSA) as two substrates of Greatwall that, when phosphorylated by this kinase, associate with and inhibit PP2A. Despite the fact that these two substrates are able to inhibit PP2A, only endogenous Arpp19 is responsible for the phosphatase inhibition at mitotic entry in xenopus egg extratcs. Roles of ENSA are currently under investigation.
2

Identification and characterization of new Greatwall kinase substrates / Identification et caractérisation de nouveaux substrats de la kinase Greatwall

Sundermann, Lena 02 July 2018 (has links)
La Division mitotique est une phase essentielle du cycle cellulaire qui assure la répartition correcte du contenu génétique. La mitose implique une réorganisation cellulaire profonde qui est principalement induite par une phosphorylation massive de protéines. Cette phosphorylation a lieu grâce à un équilibre fin entre kinases et phosphatases. À l'entrée mitotique, la phosphorylation protéique est induite par l'activation de la kinase cycline B/CDK1 et par l'inhibition de la phosphatase PP2A-B55. Résultats de notre et d'autres laboratoires ont récemment découvert une nouvelle voie essentielle pour moduler la phosphatase PP2A-B55 pendant la transition G2-M. Cette voie inclut la kinase Greatwall (GW) et ses substrats Arpp19 et ENSA. À l'entrée mitotique GW est activé et phosphoryle Arpp19 et ENSA les convertissant en inhibiteurs puissants de PP2A-B55. Étonnamment, aucun autre substrat de GW n'a été identifié jusqu'ici. Cependant, plusieurs éléments suggèrent fortement de nouveaux rôles de GW indépendamment de Arpp19 et de ENSA. L'objectif principal de ce travail était l'identification de nouveaux substrats de GW. À cette fin, j'ai utilisé plusieurs approches, y compris: (1) fractionnement biochimique des lysats de cellules ou des extraits d'oeufs de Xenopus combiné suivi d’une phosphorylation in vitro avec une kinase GW recombinante, (2) SILAC/phosphoproteomique des lysats de cellules exprimant différents niveau de GW, (3) Co-Immunoprecipitation, (4) BioID, et (5) une approche dirigée candidat. Les résultats de la phosphorylation in vitro ont révélé la présence de deux bandes de phosphorylation intéressantes qui sont actuellement analysées. Les deux approches SILAC/phosphoprotéinique et interactome ont révélé l'enrichissement des protéines impliquées dans la régulation post-transcriptionnelle de l'expression génique et des processus liés à l'ARN, une fonction physiologique déjà décrite pour cette voie chez la levure. Enfin, nous avons directement étudié la phosphorylation présumée par GW de trois candidats connus pour être impliqués dans le contrôle du cycle cellulaire. Bien que phosphorylées in vitro par GW, nous n’avons pu identifier le site de phosphorylation que dans l'une de ces trois protéines. Cette protéine, qui correspond à un inhibiteur de phosphatase, semble contrôler la sortie mitotique par la modulation de la déphosphorylation protéique. Un mutant non phosphorylable de cet inhibiteur induit une sortie mitotique perturbée avec une déphosphorylation ralentie des substrats mitotiques et une altération de la dégradation de la cycline B. J’ai pu attribuer ce défaut à une association perturbée de l'inhibiteur avec la phosphatase et, par conséquent, à un timing aberrant de l'inhibition de la phosphatase. Enfin, j'ai identifié le site de phosphorylation par GW comme le facteur clé contrôlant cette association. En résumé, j'ai identifié dans cette étude un nouveau substrat de GW contrôlant l'activité de la phosphatase essentielle pour une division mitotique correcte. / Mitotic division is an essential phase of the cell cycle that ensures the correct repartition of the genetic content. Mitosis involves profound cellular reorganization that is mostly induced by massive protein phosphorylation. This phosphorylation is achieved thanks to the fine-tuning of the balance between kinases and phosphatases. At mitotic entry, protein phosphorylation is induced by the activation of the master kinase Cdk1-cyclin B and the inhibition of the phosphatase PP2A B55. Previous results from our and other laboratories recently discovered a new pathway essential to modulate PP2A-B55 during G2-M transition. This pathway includes the kinase Greatwall (GW) and its substrates Arpp19 and Ensa. At mitotic entry GW is activated and promotes the phosphorylation of Arpp19/Ensa converting them into potent inhibitors of PP2A B55. Surprisingly, no other substrates of GW have been identified so far. However, several pieces of data strongly suggest new roles of GW independently of Arpp19 and Ensa. The main aim of this work was the identification of new substrates of GW. To this end, I used several approaches including: (1) Biochemical fractionation of cell lysates or Xenopus egg extracts combined with in vitro phosphorylation with recombinant GW kinase, (2) SILAC/phosphoproteomics from cell lysates expressing different GW amounts, (3) Co-Immunoprecipitation, (4) BioID and (5) a candidate directed approach. Results from in vitro phosphorylation revealed the presence of two interesting phosphorylated bands that are currently being analysed. Both SILAC/phosphoproteomic and interactome approaches yielded the enrichment of proteins involved post-transcriptional regulation of gene expression and RNA related processes, a physiological function already described for this pathway in yeast. Finally, we directly investigated the putative phosphorylation by GW of three candidates known to be involved in the control of cell cycle. Although phosphorylated in vitro by GW, we could only identify the phosphorylation site in one of these three proteins. This protein, corresponding to a phosphatase inhibitor, appears to control mitotic exit through the modulation of mitotic protein dephosphorylation. A non-phosporylable mutant of this inhibitor promotes a perturbed mitotic exit with delayed dephosphorylation of mitotic substrates and impaired cyclin B degradation. I could attribute this defect to a perturbed association of the inhibitor with the phosphatase and consequently to an aberrant timing of phosphatase inhibition. Finally, I identified the GW phosphorylation site as a key factor controlling this association. In summary, I identified in this study a new substrate of GW controlling phosphatase activity essential for correct mitotic division.
3

Mathematical modelling of mitotic controls

Rata, Scott January 2018 (has links)
The mitotic cell cycle is fundamental to eukaryotic life. In mitosis, replicated chromosomes are segregated to form two new nuclei. This is essential to ensure the maintenance of chromosome number between parent and daughter cells. In higher eukaryotes, numerous cytological changes occur to facilitate the separation of the genetic material: the nuclear envelope breaks down, the mitotic spindle assembles, and the cell rounds-up. There is a well-conserved control network that regulates these processes to bring about the entry into mitosis, the separation of the genetic material, and the reversal of these processes during mitotic exit. To build a coherent model of these regulatory networks requires us to write the biochemical reactions in mathematical form. The work in this Thesis pertains to three fundamental switches: entry into mitosis, the metaphase-to-anaphase transition, and exit from mitosis. I present three studies from a systems-level perspective. The first investigates a novel bistable mechanism controlling mitotic entry/exit in vitro using purified proteins. Dephosphorylation of Greatwall kinase by the phosphatase PP2A-B55 creates a double negative feedback loop that gives a bistable system response with respect to cyclin-dependent kinase 1 (Cdk1) activity. The second looks at hysteresis between mitotic entry and mitotic exit in HeLa cells. Hysteresis persists when either of the regulatory loops of Cdk1 or its counter-acting phosphatase PP2A-B55 is removed, but is diminished when they are both removed. Finally, the regulation of separase in the metaphase-to-anaphase transition is analysed. Separase that is liberated from securin inhibition is isomerised by Pin1 into a conformation that can bind to cyclin B1. This binding peaks after separase has cleaved cohesin and initiated anaphase.
4

Spatiotemporal regulation of the Greatwall : PP2A axis is required for mitotic progression

Wang, Peng 09 1900 (has links)
Le cycle cellulaire est hautement régulé par la phosphorylation réversible de plusieurs effecteurs. La kinase dépendante des cyclines Cdk1 déclenche la mitose en induisant le bris de l’enveloppe nucléaire, la condensation des chromosomes et la formation du fuseau mitotique. Chez les animaux métazoaires, ces évènements sont contrés par la protéine phosphatase PP2A-B55, qui déphosphoryle plusieurs substrats de Cdk1. La kinase Greatwall (Gwl) est activée par le complexe cycline B-Cdk1 en début de mitose et induit ensuite l’inhibition de PP2A-B55 via Endos/Arpp19. Toutefois, les mécanismes moléculaires qui régulent Gwl sont encore peu connus. Nous avons montré que Gwl a une activité s’opposant à PP2A-B55, qui collabore avec la kinase Polo pour assurer l’attachement du centrosome au noyau et la progression du cycle cellulaire dans le syncytium de l’embryon de la drosophile. Ensuite, nous avons trouvé dans des cellules de drosophile que Gwl est localisée au noyau pendant l’interphase, mais qu’elle se relocalise au cytoplasme dès la prophase, avant le bris de l’enveloppe nucléaire. Nous avons montré que cette translocation de Gwl est cruciale pour sa fonction et qu’elle dépend de la phosphorylation de plusieurs résidus de la région centrale de Gwl par les kinases Polo et Cdk1. Cette région centrale contient également deux séquences de localisation nucléaire (respectivement NLS1 et NLS2). De plus, nos résultats suggèrent que la phosphorylation de Gwl par la kinase Polo promeut sa liaison avec la protéine 14-3-3ε, ce qui favorise la rétention cytoplasmique de Gwl. Le rôle de Cdk1 dans cette translocation reste quant à lui inconnu. De plus, nous avons montré que le complexe cycline B-Cdk1 entre dans le noyau avant que Gwl ne soit transportée dans le cytoplasme. Cdk1 pourrait donc activer Gwl et phosphoryler ses substrats nucléaires, à l’abri de PP2A-B55 qui est largement cytoplasmique. Gwl est ensuite exclue du noyau et relocalisée dans le cytoplasme afin d’induire l’inhibition de PP2A-B55. Cela permet de synchroniser les événements de phosphorylation se produisant dans le noyau et dans le cytoplasme. Fait intéressant, un mécanisme de régulation de la localisation de Gwl similaire à cela a été découvert chez l’humain et chez la levure, suggérant que ce mécanisme est conservé entre différentes espèces. / Reversible phosphorylation of proteins, triggered by cyclically activated kinases and phosphatases, is a key mechanism to control cell cycle progression. CyclinB-Cdk1 is a crucial kinase phosphorylating a large number of substrates to trigger mitotic entry. However, in metazoans, it is counteracted mainly by a Protein Phosphatase 2A carrying the B55 regulatory subunit (PP2A-B55). On the other hand, the Greatwall (Gwl) kinase is activated by CyclinB-Cdk1 upon mitotic entry and subsequently induces the inhibition of PP2A-B55 by Endos/Arpp19, thus promoting mitotic entry and maintenance. Nonetheless, the regulatory mechanisms of Gwl are less clear. We demonstrated that in Drosophila syncytial embryos, PP2A-B55 is negatively regulated by Gwl, but collaborates with Polo kinase to ensure both nucleus attachment of centrosome and faithful cell cycle progression. Later, we discovered that in Drosophila, the subcellular localization of Gwl changes dramatically throughout the cell cycle. Gwl is nuclear in interphase but suddenly becomes mostly cytoplasmic in prophase before nuclear envelope breakdown. Such translocation is important for Gwl’s function and requires the phosphorylation of Gwl by both Polo kinase and Cdk1 in the region containing two Nuclear Localization Signals (NLSs). Phosphorylation of Gwl by Polo likely promotes its association with14-3-3ε thereby promoting Gwl cytoplasmic retention, whereas Cdk1’s role in this translocation remains elusive. Moreover, I found that most cyclin B is imported into the nucleus before Gwl translocates to the cytoplasm. Therefore, Cdk1 can activate Gwl and phosphorylate its nuclear substrates without the perturbation of PP2A-B55 which is largely cytoplasmic. Subsequently, Gwl translocates into cytoplasm to mediate the inhibition of PP2A-B55 so that the phosphorylation events can be synchronized between the nucleus and the cytoplasm. Interestingly, similar spatial regulation of Gwl was also uncovered in mammal cells and in yeast, implying a conserved regulatory mechanism across species.
5

RSK2 et Greatwall, deux AGC kinases actrices de la mitose / RSK2 and Greatwall, two AGC kinases involved in the regulation of mitosis

Brioudes, Estelle 25 November 2010 (has links)
La mitose est une phase importante du cycle cellulaire. Les mécanismes de surveillance s'assurent de l'ordre et de l'exécution correcte des événements du cycle cellulaire dont les erreurs peuvent conduire à l'aneuploïdie. Pendant la mitose, la séparation des chromatides sœurs est régulée par le point de contrôle du fuseau mitotique qui s'assure que tous les chromosomes sont correctement alignés sur la plaque métaphasique. L'entrée et la sortie de mitose sont régulées par l'activation et l'inactivation du complexe cycline B/Cdk1. Cette fine régulation fait intervenir de nombreuses kinases et phosphatases. Dans ce projet nous nous sommes intéressés plus particulièrement à deux AGC kinases : RSK2 et Greatwall (Gwl).Au cours de cette étude nous nous sommes proposés d'analyser l'implication de RSK2, substrat majeur de la MAPK, dans le point de contrôle du fuseau mitotique. Nos résultats montrent que RSK2 est essentielle pour l'activité du point de contrôle du fuseau mitotique dans les extraits d'œufs de xénope ainsi que pour la localisation des autres protéines de ce mécanisme de surveillance localisées aux kinétochores. Nous montrons également que RSK2 participe au point de contrôle dans les cellules humaines. En effet, RSK2 est nécessaire à la localisation aux kinétochores de Mad1, Mad2 et Cenp-E, protéines essentielles à l'activité de ce checkpoint. L'entrée et la sortie de mitose sont régulées par le complexe cycline B/Cdk1 et des phosphatases. Gwl est une nouvelle kinase essentielle à l'entrée en mitose et au maintien de l'état mitotique dans les extraits d'œufs de xénope. En effet, nos résultats montrent que Gwl maintient l'état mitotique indépendamment du complexe cycline B/Cdk1, en régulant négativement PP2A, une phosphatase responsable de la déphoshorylation des substrats mitotiques. / Mitosis is an important phase of cell cycle. The Spindle Assembly Checkpoint (SAC) verifies the orders and the events correct execution of the cell cycle, as errors may lead to aneuploidy. During the mitosis, the checkpoint delays the anaphase onset until all chromosomes are correctly attached to the spindle‘s microtubules. Entry and Exit of mitosis are regulated by the activation and inactivation of cyclin B/Cdk1. A lot of kinases and phosphatases are involved in this fine regulation. In this project, we are particularly focusing on two AGC kinases: RSK2 and Greatwall (Gwl).In this study, we analyzed RSK2, a major substrates of MAPK, involvement in SAC. Our results show that RSK2 is essential to the activation of SAC in xenopus egg extracts and for the localization at the kinétochores of the others SAC components. We also show that RSK2 participate in the maintenance of the SAC in human cells. Indeed, RSK2 is necessary for Mad1, Mad2 and Cenp-E localization, essential proteins for SAC activation.Entry and exit of mitosis are regulated by cyclin B/Cdk1 complex and phosphatases. Gwl is a new kinase essential to the entry into mitosis and maintenance of the mitotic state in xenopus egg extracts. Indeed, our results showed that Gwl maintains the mitotic state independently of cyclin B/Cdk1 but with the negative regulation of PP2A, which dephosphorylate the mitotic substrates
6

Régulation et fonctions de la phosphatase PP2A-Twins pendant la mitose chez Drosophila melanogaster

Larouche, Myreille 06 1900 (has links)
L'entrée en mitose est initiée par le complexe cycline B – Cdk1. La phosphorylation de ses substrats déclenche des transformations incluant la condensation des chromosomes, le bris de l'enveloppe nucléaire et la formation d'un fuseau mitotique. Ces transformations permettent à la cellule de se diviser. La protéine phosphatase 2A (PP2A) en complexe avec sa sous-unité B55/Twins (Tws) reconnaît et déphosphoryle les substrats de cycline B – Cdk1. Pour éviter la déphosphorylation précoce des phosphoprotéines mitotiques, PP2A-B55/Tws est inhibée en entrée de mitose. Cette inhibition de la phosphatase est attribuable au module Greatwall (Gwl) – endosulfines. Activée en entrée de mitose, la kinase Gwl phosphoryle les endosulfines, qui inhibent alors de manière spécifique PP2A-B55/Tws. Gwl est exportée du noyau vers le cytoplasme en prophase, avant le bris de l’enveloppe nucléaire. Les mécanismes de régulation spatiotemporelle du module Gwl – endosulfines – PP2AB55/Tws ne sont pas entièrement élucidés. De plus, les substrats ciblés par PP2AB55/Tws en sortie mitose ne sont pas tous identifiés à ce jour. Dans mon travail de thèse, j’ai trouvé que Tws peut transiter par le noyau via un signal de localisation nucléaire (NLS), mais que ses fonctions essentielles sont au cytoplasme. De plus, j’ai trouvé que l’unique endosulfine présente chez Drosophila melanogaster, Endos, a une localisation cytoplasmique. Cette localisation est requise pour qu’Endos soit efficacement phosphorylée par la forme active et cytoplasmique de Gwl. Endos phosphorylée lie ensuite PP2A-Tws pour l’inhiber. Empêcher la localisation cytoplasmique d’Endos avant le bris de l’enveloppe nucléaire entraîne des défauts mitotiques dépendants de l’activité de PP2A-Tws. Les substrats mitotiques de PP2A-Tws ne sont pas tous connus. Par des cribles de phosphoprotéomique, j’ai identifié des substrats mitotiques potentiels de PP2A-Tws. L’un des candidats hyperphosphorylés suite à la déplétion de Tws, Otefin (Ote), est une protéine de l’enveloppe nucléaire. Les sites de phosphorylation d’Otefin identifiés dans mes cribles sont adjacents à son domaine d’interaction avec BAF, une protéine liant l’ADN et certaines protéines de l’enveloppe nucléaire. L’introduction de mutations phosphomimétiques à ces sites abolit l’association d’Otefin avec BAF, en plus de retarder le recrutement d’Otefin à l’enveloppe nucléaire en sortie de mitose. Par ailleurs, l’association Otefin – BAF dépend de l’activité de PP2A-Tws. Enfin, la perte d’Otefin dans l’embryon syncytial de mouche affecte le développement. En somme, mes travaux ont permis d’approfondir notre compréhension mécanistique de la régulation spatiotemporelle du module Gwl – endosulfines – PP2A et d’identifier de nouveaux substrats potentiels de PP2A-Tws. / Mitosis is triggered by the cyclin B – Cdk1 complex that phosphorylates multiple substrates to promote transformations such as chromosome condensation, nuclear envelope breakdown and mitotic spindle formation. These transformations are required for cell division. The protein phosphatase 2A (PP2A) in complex with its B55/Twins (Tws) subunit dephosphorylates cyclin B – Cdk1 substrates. To prevent premature dephosphorylation of the mitotic phosphoproteins, PP2A-B55/Tws is inhibited upon mitotic entry. The Greatwall (Gwl) – endosulfines pathway is responsible for PP2AB55/Tws inhibition. Activated upon mitotic entry, the Gwl kinase phosphorylates small proteins called endosulfines to turn them into specific inhibitors of PP2A-B55/Tws. Gwl is exported from the nucleus to the cytoplasm before nuclear envelope breakdown. However, the mechanisms of spatiotemporal regulation of the Gwl – endosulfines – PP2A module are not entirely elucidated. Moreover, the identity of the proteins targeted by PP2A-Tws during mitotic exit is still unclear. During my PhD training, I found that Tws can transit through the nucleus via a nuclear localization signal (NLS), but its essential functions are cytoplasmic. Moreover, the sole endosulfine present in Drosophila melanogaster, Endos, has a cytoplasmic localization. Such localization is required for efficient phosphorylation of Endos by active and cytoplasmic Gwl. Once phosphorylated, Endos binds PP2A-Tws to inhibit its activity. Preventing the cytoplasmic localization of Endos prior to nuclear envelope breakdown causes mitotic defects that are PP2A-Tws-dependent. The mitotic substrates of PP2A-Tws are not all identified. By phosphoproteomic screening, I identified potential novel PP2A-Tws substrates. Among the hits that are hyperphosphorylated following Tws depletion, there is the nuclear envelope protein Otefin (Ote). The identified phosphosites on Otefin are adjacent to its domain of interaction with BAF, a protein binding DNA and nuclear envelope proteins. Introducing phosphomimetic mutations at these sites abolishes the Otefin – BAF association and delays Otefin recruitment at the reforming nuclear envelope during mitotic exit. Moreover, the Otefin – BAF association is PP2A-Tws-dependent. Finally, loss of Otefin in the syncytial embryo of the fly impairs development. Altogether, my results deepen our understanding of the spatiotemporal coordination of the Gwl – endosulfines – PP2A module and provide potential novel PP2A-Tws substrates.

Page generated in 0.0312 seconds